Using the Lyapunov exponent from cepstral coefficients for automatic emotion recognition

M. Zbancioc, Monica Feraru
{"title":"Using the Lyapunov exponent from cepstral coefficients for automatic emotion recognition","authors":"M. Zbancioc, Monica Feraru","doi":"10.1109/ICEPE.2014.6969878","DOIUrl":null,"url":null,"abstract":"The main goal of this paper is to establish the relevance of nonlinear parameters (Lyapunov exponents) in the automatic classification of emotions, for the Romanian language. The Largest Lyapunov Exponent - LLE was computed for the MFCC mel frequency cepstral coefficients and the LPCC linear prediction cepstral coefficients. The Support Vector Machine - SVM classifier provides better results than Weighted K-Nearest Neighbors - WKNN classifier in emotion recognition for feature vectors that contains LLE (around 75%). The best recognized by using SVM classifier was the neutral tone, followed by the sadness, fury and the weakest recognized was the joy. For features vectors which include LLE the best results was obtained in combination with LAR - Log Area Ratio coefficients, respectively PARCOR - partial correlation coefficients.","PeriodicalId":271843,"journal":{"name":"2014 International Conference and Exposition on Electrical and Power Engineering (EPE)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference and Exposition on Electrical and Power Engineering (EPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPE.2014.6969878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The main goal of this paper is to establish the relevance of nonlinear parameters (Lyapunov exponents) in the automatic classification of emotions, for the Romanian language. The Largest Lyapunov Exponent - LLE was computed for the MFCC mel frequency cepstral coefficients and the LPCC linear prediction cepstral coefficients. The Support Vector Machine - SVM classifier provides better results than Weighted K-Nearest Neighbors - WKNN classifier in emotion recognition for feature vectors that contains LLE (around 75%). The best recognized by using SVM classifier was the neutral tone, followed by the sadness, fury and the weakest recognized was the joy. For features vectors which include LLE the best results was obtained in combination with LAR - Log Area Ratio coefficients, respectively PARCOR - partial correlation coefficients.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用倒谱系数的李雅普诺夫指数进行自动情绪识别
本文的主要目标是建立非线性参数(李雅普诺夫指数)在情感自动分类中的相关性,用于罗马尼亚语。计算了MFCC mel频率倒谱系数和LPCC线性预测倒谱系数的最大Lyapunov指数LLE。对于包含LLE的特征向量,支持向量机- SVM分类器比加权k近邻- WKNN分类器在情感识别方面提供了更好的结果(约75%)。SVM分类器识别效果最好的是中性语气,其次是悲伤、愤怒,识别效果最差的是喜悦语气。对于包含LLE的特征向量,分别结合LAR - Log Area Ratio系数和PARCOR -偏相关系数得到了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness analysis of a disturbance-observer based PI control Developing embedded control system platform for testing PMSM drives Contribution to determination of magnetic properties of weights by susceptometer method Starting of large compressor motors on a weak grid - Case study Near-field level emitted by professional radio communication devices: Preliminary measurements and simulations for an occupational exposure assessment approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1