{"title":"Hydrolytic Aging in Rubber-Like Materials: A Micro-Mechanical Approach to Modeling","authors":"A. Bahrololoumi, R. Dargazany","doi":"10.1115/imece2019-11873","DOIUrl":null,"url":null,"abstract":"\n The effect of hydrolytic aging on mechanical responses of Rubber likes materials, in particular, Mullins effect and the permanent set has been modeled. Hydrolytic aging is considered as the result of the competition between two phenomena (1) chain scission and (2) cross-link scission/reformation. Both phenomena were modeled and thus, the strain energy of the polymer matrix is written with respect to three independent mechanisms; i) the shrinking original matrix which has not been attacked by water, ii) conversion of the first network to a new network due to the reduction of the crosslinks, and iii) energy loss from network degradation due to water attacks to ester groups. The model is validated with respect to a set of experimental data. Besides accuracy, the simplicity and few numbers of fitting parameters make the model a good choice for further implementations.","PeriodicalId":375383,"journal":{"name":"Volume 9: Mechanics of Solids, Structures, and Fluids","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Mechanics of Solids, Structures, and Fluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-11873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
The effect of hydrolytic aging on mechanical responses of Rubber likes materials, in particular, Mullins effect and the permanent set has been modeled. Hydrolytic aging is considered as the result of the competition between two phenomena (1) chain scission and (2) cross-link scission/reformation. Both phenomena were modeled and thus, the strain energy of the polymer matrix is written with respect to three independent mechanisms; i) the shrinking original matrix which has not been attacked by water, ii) conversion of the first network to a new network due to the reduction of the crosslinks, and iii) energy loss from network degradation due to water attacks to ester groups. The model is validated with respect to a set of experimental data. Besides accuracy, the simplicity and few numbers of fitting parameters make the model a good choice for further implementations.