Correcting the document layout: a machine learning approach

D. Malerba, F. Esposito, O. Altamura, Michelangelo Ceci, Margherita Berardi
{"title":"Correcting the document layout: a machine learning approach","authors":"D. Malerba, F. Esposito, O. Altamura, Michelangelo Ceci, Margherita Berardi","doi":"10.1109/ICDAR.2003.1227635","DOIUrl":null,"url":null,"abstract":"In this paper, a machine learning approach to support the user during the correction of the layout analysis is proposed. Layout analysis is the process of extracting a hierarchical structure describing the layout of a page. In our approach, the layout analysis is performed in two steps: firstly, the global analysis determines possible areas containing paragraphs, sections, columns, figures and tables, and secondly, the local analysis groups together blocks that possibly fall within the same area. The result of the local analysis process strongly depends on the quality of the results of the first step. We investigate the possibility of supporting the user during the correction of the results of the global analysis. This is done by allowing the user to correct the results of the global analysis and then by learning rules for layout correction from the sequence of user actions. Experimental results on a set of multi-page documents are reported and commented.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper, a machine learning approach to support the user during the correction of the layout analysis is proposed. Layout analysis is the process of extracting a hierarchical structure describing the layout of a page. In our approach, the layout analysis is performed in two steps: firstly, the global analysis determines possible areas containing paragraphs, sections, columns, figures and tables, and secondly, the local analysis groups together blocks that possibly fall within the same area. The result of the local analysis process strongly depends on the quality of the results of the first step. We investigate the possibility of supporting the user during the correction of the results of the global analysis. This is done by allowing the user to correct the results of the global analysis and then by learning rules for layout correction from the sequence of user actions. Experimental results on a set of multi-page documents are reported and commented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纠正文档布局:一种机器学习方法
在本文中,提出了一种机器学习方法来支持用户在版式分析的修正过程中。布局分析是提取描述页面布局的层次结构的过程。在我们的方法中,布局分析分两步进行:首先,全局分析确定可能包含段落、节、列、图形和表格的区域,其次,局部分析将可能属于同一区域的块组合在一起。局部分析过程的结果很大程度上取决于第一步结果的质量。我们调查的可能性,支持用户在修正结果的全局分析。这是通过允许用户纠正全局分析的结果,然后通过从用户操作序列中学习布局纠正规则来实现的。对一组多页文件的实验结果进行了报告和评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of imperfect OCR on part-of-speech tagging Writer identification using innovative binarised features of handwritten numerals Word searching in CCITT group 4 compressed document images Exploiting reliability for dynamic selection of classi .ers by means of genetic algorithms Investigation of off-line Japanese signature verification using a pattern matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1