Ibrahim Al-Nahhal, M. Alghoniemy, O. Muta, A. A. El-Rahman
{"title":"Reduced complexity K-best sphere decoding algorithms for ill-conditioned MIMO channels","authors":"Ibrahim Al-Nahhal, M. Alghoniemy, O. Muta, A. A. El-Rahman","doi":"10.1109/CCNC.2016.7444753","DOIUrl":null,"url":null,"abstract":"The traditional K-best sphere decoder retains the best K-nodes at each level of the search tree; these K-nodes, include irrelevant nodes which increase the complexity without improving the performance. A variant of the K-best sphere decoding algorithm for ill-conditioned MIMO channels is proposed, namely, the ill-conditioned reduced complexity K-best algorithm (ill-RCKB). The ill-RCKB provides lower complexity than the traditional K-best algorithm without sacrificing its performance; this is achieved by discarding irrelevant nodes that have distance metrics greater than a pruned radius value, which depends on the channel condition number. A hybrid-RCKB decoder is also proposed in order to balance the performance and complexity in both well and ill-conditioned channels. Complexity analysis for the proposed algorithms is provided as well. Simulation results show that the ill-RCKB provides significant complexity reduction without compromising the performance.","PeriodicalId":399247,"journal":{"name":"2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th IEEE Annual Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC.2016.7444753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
The traditional K-best sphere decoder retains the best K-nodes at each level of the search tree; these K-nodes, include irrelevant nodes which increase the complexity without improving the performance. A variant of the K-best sphere decoding algorithm for ill-conditioned MIMO channels is proposed, namely, the ill-conditioned reduced complexity K-best algorithm (ill-RCKB). The ill-RCKB provides lower complexity than the traditional K-best algorithm without sacrificing its performance; this is achieved by discarding irrelevant nodes that have distance metrics greater than a pruned radius value, which depends on the channel condition number. A hybrid-RCKB decoder is also proposed in order to balance the performance and complexity in both well and ill-conditioned channels. Complexity analysis for the proposed algorithms is provided as well. Simulation results show that the ill-RCKB provides significant complexity reduction without compromising the performance.