SNR estimation in EMG signals contaminated with motion artifact

Thandar Oo, P. Phukpattaranont
{"title":"SNR estimation in EMG signals contaminated with motion artifact","authors":"Thandar Oo, P. Phukpattaranont","doi":"10.1109/BMEiCON56653.2022.10012080","DOIUrl":null,"url":null,"abstract":"An electromyography (EMG) recognition system is essential for enabling a variety of applications. However, motion artifact contaminated with the EMG signal as it passes through or by various tissues may degrade the recognition performance. We present the algorithm for signal-to-noise ratio (SNR) estimation in EMG signals contaminated with motion artifact. Six features derived from the EMG signals are used as the neural network input: skewness (SKEW), kurtosis (KURT), mean absolute value (MAV), wavelength (WL), zero crossing (ZC), and mean frequency (MNF). The estimated SNR values are the neural network output. The best mean and standard deviations of the correlation coefficient (CC) between the actual and estimated SNR values are provided by the MNF $(0.9699 \\pm 0.0076)$. Future research may concentrate on determining SNR values using real EMG signals in their natural surroundings.","PeriodicalId":177401,"journal":{"name":"2022 14th Biomedical Engineering International Conference (BMEiCON)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON56653.2022.10012080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An electromyography (EMG) recognition system is essential for enabling a variety of applications. However, motion artifact contaminated with the EMG signal as it passes through or by various tissues may degrade the recognition performance. We present the algorithm for signal-to-noise ratio (SNR) estimation in EMG signals contaminated with motion artifact. Six features derived from the EMG signals are used as the neural network input: skewness (SKEW), kurtosis (KURT), mean absolute value (MAV), wavelength (WL), zero crossing (ZC), and mean frequency (MNF). The estimated SNR values are the neural network output. The best mean and standard deviations of the correlation coefficient (CC) between the actual and estimated SNR values are provided by the MNF $(0.9699 \pm 0.0076)$. Future research may concentrate on determining SNR values using real EMG signals in their natural surroundings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运动伪影污染的肌电信号信噪比估计
肌电(EMG)识别系统对于实现各种应用是必不可少的。然而,当肌电图信号通过或被各种组织污染时,运动伪影可能会降低识别性能。提出了一种运动伪影污染的肌电信号信噪比估计算法。从肌电信号中提取的六个特征被用作神经网络的输入:偏度(SKEW)、峰度(KURT)、平均绝对值(MAV)、波长(WL)、过零(ZC)和平均频率(MNF)。估计的信噪比值是神经网络的输出。实际信噪比值和估计信噪比值之间的相关系数(CC)的最佳平均值和标准差由MNF $(0.9699 \pm 0.0076)$提供。未来的研究可能会集中在确定信噪比值,使用真实的肌电信号在他们的自然环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depressive states in healthy individuals lead to biased processing on frontal-parietal ERPs The effect of visual cognition on the fear caused by pain recall A Prussian Blue Modified Electrode Based Amperometric Sensor for Lactate Determination On the generalized inverse for MRI reconstruction Preliminary Study of the Relationship Between Age and Gender using Sounds Generated from the Nostrils and Pharynx During Swallowing in Healthy Subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1