Complexity theoretic limitations on learning halfspaces

Amit Daniely
{"title":"Complexity theoretic limitations on learning halfspaces","authors":"Amit Daniely","doi":"10.1145/2897518.2897520","DOIUrl":null,"url":null,"abstract":"We study the problem of agnostically learning halfspaces which is defined by a fixed but unknown distribution D on Q^n X {-1,1}. We define Err_H(D) as the least error of a halfspace classifier for D. A learner who can access D has to return a hypothesis whose error is small compared to Err_H(D). Using the recently developed method of Daniely, Linial and Shalev-Shwartz we prove hardness of learning results assuming that random K-XOR formulas are hard to (strongly) refute. We show that no efficient learning algorithm has non-trivial worst-case performance even under the guarantees that Err_H(D) <= eta for arbitrarily small constant eta>0, and that D is supported in the Boolean cube. Namely, even under these favorable conditions, and for every c>0, it is hard to return a hypothesis with error <= 1/2-n^{-c}. In particular, no efficient algorithm can achieve a constant approximation ratio. Under a stronger version of the assumption (where K can be poly-logarithmic in n), we can take eta = 2^{-log^{1-nu}(n)} for arbitrarily small nu>0. These results substantially improve on previously known results, that only show hardness of exact learning.","PeriodicalId":442965,"journal":{"name":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-eighth annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897518.2897520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 119

Abstract

We study the problem of agnostically learning halfspaces which is defined by a fixed but unknown distribution D on Q^n X {-1,1}. We define Err_H(D) as the least error of a halfspace classifier for D. A learner who can access D has to return a hypothesis whose error is small compared to Err_H(D). Using the recently developed method of Daniely, Linial and Shalev-Shwartz we prove hardness of learning results assuming that random K-XOR formulas are hard to (strongly) refute. We show that no efficient learning algorithm has non-trivial worst-case performance even under the guarantees that Err_H(D) <= eta for arbitrarily small constant eta>0, and that D is supported in the Boolean cube. Namely, even under these favorable conditions, and for every c>0, it is hard to return a hypothesis with error <= 1/2-n^{-c}. In particular, no efficient algorithm can achieve a constant approximation ratio. Under a stronger version of the assumption (where K can be poly-logarithmic in n), we can take eta = 2^{-log^{1-nu}(n)} for arbitrarily small nu>0. These results substantially improve on previously known results, that only show hardness of exact learning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习半空间的复杂性理论限制
研究由Q^n X{-1,1}上的一个固定但未知的分布D所定义的不可知论学习半空间问题。我们将Err_H(D)定义为D的半空间分类器的最小误差。能够访问D的学习器必须返回一个误差小于Err_H(D)的假设。使用Daniely, Linial和shalev - schwartz最近开发的方法,我们证明了学习结果的硬度,假设随机K-XOR公式难以(强烈)反驳。我们证明,即使保证Err_H(D)为0,并且在布尔立方体中支持D,也没有有效的学习算法具有非平凡的最坏情况性能。也就是说,即使在这些有利条件下,对于每c>0,也很难返回误差为0的假设。这些结果大大改善了之前已知的结果,这些结果只显示了精确学习的难度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exponential separation of communication and external information Proceedings of the forty-eighth annual ACM symposium on Theory of Computing Explicit two-source extractors and resilient functions Constant-rate coding for multiparty interactive communication is impossible Approximating connectivity domination in weighted bounded-genus graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1