Comparison of Classification Algorithms of the Autism Spectrum Disorder Diagnosis

A. Lawi, F. Aziz
{"title":"Comparison of Classification Algorithms of the Autism Spectrum Disorder Diagnosis","authors":"A. Lawi, F. Aziz","doi":"10.1109/EIConCIT.2018.8878593","DOIUrl":null,"url":null,"abstract":"ASD sufferers face difficulties in early development compared to normal humans. Various tools, clinical, and non-clinical approaches have been implemented but take a long time to produce a complete diagnosis. the solution by adopting machine learning. This study proposes the application of cross-validation techniques in the Decision Tree method, Linear Discriminant Analysis, Logistic Regression, SVM, and KNN and determines the best k value in each classification method because the shift of datasets when using cross-validation techniques in the classification method is one factor that can cause the estimate to be inaccurate. The results show that the decision tree provides an accuracy of 100% in each of the k values that have been determined previously. 96.9% on Linear Discriminant Analysis with $k=7, k=9$, and $k =10$. 99.7% in Logistic Regression with values of $k=2$ and $k= 3$. 99.9% in Support Vector Machine with values of $k=9$ and $k =1\\theta$ and 94.2% for K-Nearest Neighbors with a value of $k=8$.","PeriodicalId":424909,"journal":{"name":"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIConCIT.2018.8878593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

ASD sufferers face difficulties in early development compared to normal humans. Various tools, clinical, and non-clinical approaches have been implemented but take a long time to produce a complete diagnosis. the solution by adopting machine learning. This study proposes the application of cross-validation techniques in the Decision Tree method, Linear Discriminant Analysis, Logistic Regression, SVM, and KNN and determines the best k value in each classification method because the shift of datasets when using cross-validation techniques in the classification method is one factor that can cause the estimate to be inaccurate. The results show that the decision tree provides an accuracy of 100% in each of the k values that have been determined previously. 96.9% on Linear Discriminant Analysis with $k=7, k=9$, and $k =10$. 99.7% in Logistic Regression with values of $k=2$ and $k= 3$. 99.9% in Support Vector Machine with values of $k=9$ and $k =1\theta$ and 94.2% for K-Nearest Neighbors with a value of $k=8$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自闭症谱系障碍诊断分类算法的比较
与正常人相比,ASD患者在早期发育方面面临困难。已经实施了各种工具,临床和非临床方法,但需要很长时间才能产生完整的诊断。解决方案是采用机器学习。本研究提出在决策树方法、线性判别分析、逻辑回归、支持向量机和KNN中应用交叉验证技术,并确定每种分类方法中的最佳k值,因为在分类方法中使用交叉验证技术时,数据集的移位是导致估计不准确的一个因素。结果表明,决策树在之前确定的每个k值中都提供了100%的准确性。k=7、k=9、k= 10时线性判别分析的96.9%。在$k=2$和$k= 3$的情况下,99.7%的Logistic回归。值为$k=9$和$k= 1\theta$的支持向量机的准确率为99.9%,值为$k=8$的k近邻的准确率为94.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Study on Zoning, Histogram, and Structural Methods to Classify Sundanese Characters from Handwriting Medicine Stock Forecasting Using Least Square Method Sentiment Analysis of Product Reviews using Naive Bayes Algorithm: A Case Study [EIConCIT 2018 Cover Page] Keynote Speech 3 Internet of Things (IoT) Technology For Star Fruit Plantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1