An information theoretic similarity-based learning method for databases

Changhwan Lee
{"title":"An information theoretic similarity-based learning method for databases","authors":"Changhwan Lee","doi":"10.1109/CAIA.1994.323686","DOIUrl":null,"url":null,"abstract":"Similarity-based learning has been widely and successfully used in some domains. Despite these successes, most similarity measures used in the current literature are defined on limited feature types. Therefore, these similarity measures cannot be applied to the database environment due to the variety of data types that exist. In this paper, we propose a new method of similarity-based learning for databases using information theory. The current similarity measures are improved in several ways. Similarity is defined on every attribute type in the database, and each attribute is assigned a weight depending on its importance with respect to the target attribute. Besides, our nearest neighbor algorithm gives different weights to the selected instances. Our system is implemented and tested on some typical machine learning databases. Our experiments show that the classification accuracy of our system is, in general, superior to that of other learning methods.<<ETX>>","PeriodicalId":297396,"journal":{"name":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIA.1994.323686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Similarity-based learning has been widely and successfully used in some domains. Despite these successes, most similarity measures used in the current literature are defined on limited feature types. Therefore, these similarity measures cannot be applied to the database environment due to the variety of data types that exist. In this paper, we propose a new method of similarity-based learning for databases using information theory. The current similarity measures are improved in several ways. Similarity is defined on every attribute type in the database, and each attribute is assigned a weight depending on its importance with respect to the target attribute. Besides, our nearest neighbor algorithm gives different weights to the selected instances. Our system is implemented and tested on some typical machine learning databases. Our experiments show that the classification accuracy of our system is, in general, superior to that of other learning methods.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息理论的数据库相似度学习方法
基于相似度的学习在一些领域得到了广泛而成功的应用。尽管取得了这些成功,但目前文献中使用的大多数相似性度量都是在有限的特征类型上定义的。因此,由于存在各种各样的数据类型,这些相似性度量不能应用于数据库环境。本文提出了一种基于信息理论的数据库相似度学习方法。目前的相似性度量在几个方面得到了改进。在数据库中的每种属性类型上定义相似性,并根据其相对于目标属性的重要性为每个属性分配权重。此外,我们的最近邻算法对选择的实例赋予不同的权重。我们的系统在一些典型的机器学习数据库上进行了实现和测试。实验表明,该系统的分类准确率总体上优于其他学习方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OaSiS: integrating safety reasoning for decision support in oncology Memory-based parsing with parallel marker-passing A study of an expert system for interpreting human walking disorders Integrating case-based reasoning, knowledge-based approach and Dijkstra algorithm for route finding Learning control knowledge through cases in schedule optimization problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1