New Descriptors of Textual Records: Getting Help from Frequent Itemsets

Ayoub Bokhabrine, Ismaïl Biskri, Nadia Ghazzali
{"title":"New Descriptors of Textual Records: Getting Help from Frequent Itemsets","authors":"Ayoub Bokhabrine, Ismaïl Biskri, Nadia Ghazzali","doi":"10.1142/s2196888820500207","DOIUrl":null,"url":null,"abstract":"The analysis of numerical data, whether structured, semi-structured, or raw, is of paramount importance in many sectors of economic, scientific, or simply social activity. The process of extraction of association rules is based on the lexical quality of the text and on the minimum support set by the user. In this paper, we implemented a platform named “IDETEX” capable of extracting itemsets from textual data and using it for the experimentation in different types of clustering methods, such as [Formula: see text]-Medoids and Hierarchical clustering. The experiments conducted demonstrate the potential of the proposed approach for defining similarity between segments.","PeriodicalId":256649,"journal":{"name":"Vietnam. J. Comput. Sci.","volume":"38 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam. J. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2196888820500207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The analysis of numerical data, whether structured, semi-structured, or raw, is of paramount importance in many sectors of economic, scientific, or simply social activity. The process of extraction of association rules is based on the lexical quality of the text and on the minimum support set by the user. In this paper, we implemented a platform named “IDETEX” capable of extracting itemsets from textual data and using it for the experimentation in different types of clustering methods, such as [Formula: see text]-Medoids and Hierarchical clustering. The experiments conducted demonstrate the potential of the proposed approach for defining similarity between segments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
文本记录的新描述符:从频繁项集获得帮助
对数字数据的分析,无论是结构化的、半结构化的还是原始的,在经济、科学或社会活动的许多部门中都是至关重要的。关联规则的提取过程基于文本的词法质量和用户设置的最小支持度。在本文中,我们实现了一个名为“IDETEX”的平台,该平台能够从文本数据中提取项集,并将其用于不同类型的聚类方法的实验,如[公式:见文本]- medioids和分层聚类。所进行的实验证明了所提出的方法在定义片段之间相似性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Arabic Sentiment Analysis Using LSTM Based on Word Embedding Models Synthetic Data Generation for Morphological Analyses of Histopathology Images with Deep Learning Models Generating Popularity-Aware Reciprocal Recommendations Using Siamese Bi-Directional Gated Recurrent Units Network Hyperparameter Optimization of a Parallelized LSTM for Time Series Prediction Natural Language Processing and Sentiment Analysis on Bangla Social Media Comments on Russia-Ukraine War Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1