Mining unexpected multidimensional rules

M. Plantevit, S. Goutier, F. Guisnel, Anne Laurent, M. Teisseire
{"title":"Mining unexpected multidimensional rules","authors":"M. Plantevit, S. Goutier, F. Guisnel, Anne Laurent, M. Teisseire","doi":"10.1145/1317331.1317347","DOIUrl":null,"url":null,"abstract":"Discovering unexpected rules is essential, particularly for industrial applications with marketing stakes. In this context, many works have been done for association rules. However, none of them addresses sequences. In this paper, we thus propose to discover unexpected multidimensional sequential rules in data cubes. We define the concept of multidimensional sequential rule, and then unexpectedness. We formalize these concepts and define an algorithm for mining this kind of rules. Experiments on a real data cube are reported and highlight the interest of our approach.","PeriodicalId":335396,"journal":{"name":"International Workshop on Data Warehousing and OLAP","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Data Warehousing and OLAP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1317331.1317347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Discovering unexpected rules is essential, particularly for industrial applications with marketing stakes. In this context, many works have been done for association rules. However, none of them addresses sequences. In this paper, we thus propose to discover unexpected multidimensional sequential rules in data cubes. We define the concept of multidimensional sequential rule, and then unexpectedness. We formalize these concepts and define an algorithm for mining this kind of rules. Experiments on a real data cube are reported and highlight the interest of our approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
挖掘意外的多维规则
发现意想不到的规则是至关重要的,特别是对于有市场风险的工业应用。在这种情况下,已经为关联规则做了许多工作。然而,它们都不指向序列。在本文中,我们提出在数据立方体中发现意想不到的多维顺序规则。首先定义了多维顺序规则的概念,然后定义了非预期性。我们将这些概念形式化,并定义了挖掘这类规则的算法。报告了在真实数据立方体上的实验,并突出了我们的方法的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Advanced Data Warehouse for Integrating Large Sets of GPS Data Optimization of Data-intensive Flows: Is it Needed? Is it Solved? A Framework for User-Centered Declarative ETL What can Emerging Hardware do for your DBMS Buffer? A Semantic Model for Movement Data Warehouses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1