Game balancing with ecosystem mechanism

Wen Xia, Bhojan Anand
{"title":"Game balancing with ecosystem mechanism","authors":"Wen Xia, Bhojan Anand","doi":"10.1109/SAPIENCE.2016.7684145","DOIUrl":null,"url":null,"abstract":"To adapt game difficulty upon game character's strength, Dynamic Difficulty Adjustment (DDA) and some other learning strategies have been applied in commercial game designs. However, most of the existing approaches could not ensure diversity in results, and rarely attempted to coordinate content generation and behaviour control together. This paper suggests a solution that is based on multi-level swarm model and ecosystem mechanism, in order to provide a more flexible way of game balance control.","PeriodicalId":340137,"journal":{"name":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAPIENCE.2016.7684145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

To adapt game difficulty upon game character's strength, Dynamic Difficulty Adjustment (DDA) and some other learning strategies have been applied in commercial game designs. However, most of the existing approaches could not ensure diversity in results, and rarely attempted to coordinate content generation and behaviour control together. This paper suggests a solution that is based on multi-level swarm model and ecosystem mechanism, in order to provide a more flexible way of game balance control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于生态系统机制的游戏平衡
为了根据游戏角色的力量来调整游戏难度,动态难度调整(DDA)等学习策略被应用于商业游戏设计中。然而,大多数现有的方法不能保证结果的多样性,很少尝试将内容生成和行为控制协调在一起。本文提出了一种基于多层次群体模型和生态系统机制的解决方案,以期提供一种更为灵活的博弈平衡控制方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GP-GPU based high-performance test equipment for debugging radar digital units An efficient video Steganography technique for secured data transmission Modified autonomy oriented computing based network immunization by considering betweenness centrality Methods to detect different types of outliers A study of cloud computing environments for High Performance applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1