Zhiyuan Wang, Qingkai Meng, Shan Zhang, Hongbin Luo
{"title":"The Power of Age-based Reward in Fresh Information Acquisition","authors":"Zhiyuan Wang, Qingkai Meng, Shan Zhang, Hongbin Luo","doi":"10.1109/INFOCOM53939.2023.10229008","DOIUrl":null,"url":null,"abstract":"Many Internet platforms collect fresh information of various points of interest (PoIs) relying on users who happen to be nearby the PoIs. The platform will offer reward to incentivize users and compensate their costs incurred from information acquisition. In practice, the user cost (and its distribution) is hidden to the platform, thus it is challenging to determine the optimal reward. In this paper, we investigate how the platform dynamically rewards the users, aiming to jointly reduce the age of information (AoI) and the operational expenditure (OpEx). Due to the hidden cost distribution, this is an online non-convex learning problem with partial feedback. To overcome the challenge, we first design an age-based rewarding scheme, which decouples the OpEx from the unknown cost distribution and enables the platform to accurately control its OpEx. We then take advantage of the age-based rewarding scheme and propose an exponentially discretizing and learning (EDAL) policy for platform operation. We prove that the EDAL policy performs asymptotically as well as the optimal decision (derived based on the cost distribution). Simulation results show that the age-based rewarding scheme protects the platform’s OpEx from the influence of the user characteristics, and verify the asymptotic optimality of the EDAL policy.","PeriodicalId":387707,"journal":{"name":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2023 - IEEE Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM53939.2023.10229008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many Internet platforms collect fresh information of various points of interest (PoIs) relying on users who happen to be nearby the PoIs. The platform will offer reward to incentivize users and compensate their costs incurred from information acquisition. In practice, the user cost (and its distribution) is hidden to the platform, thus it is challenging to determine the optimal reward. In this paper, we investigate how the platform dynamically rewards the users, aiming to jointly reduce the age of information (AoI) and the operational expenditure (OpEx). Due to the hidden cost distribution, this is an online non-convex learning problem with partial feedback. To overcome the challenge, we first design an age-based rewarding scheme, which decouples the OpEx from the unknown cost distribution and enables the platform to accurately control its OpEx. We then take advantage of the age-based rewarding scheme and propose an exponentially discretizing and learning (EDAL) policy for platform operation. We prove that the EDAL policy performs asymptotically as well as the optimal decision (derived based on the cost distribution). Simulation results show that the age-based rewarding scheme protects the platform’s OpEx from the influence of the user characteristics, and verify the asymptotic optimality of the EDAL policy.