Biometric User Identification by Forearm EMG Analysis

Matus Pleva, Š. Korečko, D. Hládek, Patrick A. H. Bours, Markus Hoff Skudal, Y. Liao
{"title":"Biometric User Identification by Forearm EMG Analysis","authors":"Matus Pleva, Š. Korečko, D. Hládek, Patrick A. H. Bours, Markus Hoff Skudal, Y. Liao","doi":"10.1109/ICCE-Taiwan55306.2022.9869268","DOIUrl":null,"url":null,"abstract":"The recent experience in the use of virtual reality (VR) technology has shown that users prefer Electromyography (EMG) sensor-based controllers over hand controllers. The results presented in this paper show the potential of EMG-based controllers, in particular the Myo armband, to identify a computer system user. In the first scenario, we train various classifiers with 25 keyboard typing movements for training and test with 75. The results with a 1-dimensional convolutional neural network indicate that we are able to identify the user with an accuracy of 93% by analyzing only the EMG data from the Myo armband. When we use 75 moves for training, accuracy increases to 96.45% after cross-validation.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The recent experience in the use of virtual reality (VR) technology has shown that users prefer Electromyography (EMG) sensor-based controllers over hand controllers. The results presented in this paper show the potential of EMG-based controllers, in particular the Myo armband, to identify a computer system user. In the first scenario, we train various classifiers with 25 keyboard typing movements for training and test with 75. The results with a 1-dimensional convolutional neural network indicate that we are able to identify the user with an accuracy of 93% by analyzing only the EMG data from the Myo armband. When we use 75 moves for training, accuracy increases to 96.45% after cross-validation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
前臂肌电图分析的生物识别用户识别
最近使用虚拟现实(VR)技术的经验表明,用户更喜欢基于肌电(EMG)传感器的控制器而不是手动控制器。本文的结果显示了基于肌电图的控制器的潜力,特别是Myo臂带,以识别计算机系统用户。在第一个场景中,我们用25个键盘输入动作训练各种分类器,用75个键盘输入动作进行训练和测试。使用一维卷积神经网络的结果表明,仅通过分析来自Myo臂环的肌电图数据,我们就能够以93%的准确率识别用户。当我们使用75个动作进行训练时,经过交叉验证,准确率提高到96.45%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Thermal-Predicted Workload Movement with Three-Dimensional DRAM-RRAM Hybrid Memories for Convolutional Neural Network Applications Performance Evaluation of Fault-Tolerant Routing Methods Using Parallel Programs Down-Sampling Dark Channel Prior of Airlight Estimation for Low Complexity Image Dehazing Chip Design Image Confusion Applied to Industrial Defect Detection System On Multimodal Semantic Consistency Detection of News Articles with Image Caption Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1