Commutativity in the Algorithmic Lovász Local Lemma

V. Kolmogorov
{"title":"Commutativity in the Algorithmic Lovász Local Lemma","authors":"V. Kolmogorov","doi":"10.1109/FOCS.2016.88","DOIUrl":null,"url":null,"abstract":"We consider the recent formulation of the Algorithmic Lovász Local Lemma [1], [2] for finding objects that avoid \"bad features\", or \"flaws\". It extends the Moser-Tardos resampling algorithm [3] to more general discrete spaces. At each step the method picks a flaw present in the current state and \"resamples\" it using a \"resampling oracle\" provided by the user. However, it is less flexible than the Moser-Tardos method since [1], [2] require a specific flaw selection rule, whereas [3] allows an arbitrary rule (and thus can potentially be implemented more efficiently). We formulate a new \"commutativity\" condition, and prove that it is sufficient for an arbitrary rule to work. It also enables an efficient parallelization under an additional assumption. We then show that existing resampling oracles for perfect matchings and permutations do satisfy this condition. Finally, we generalize the precondition in [2] (in the case of symmetric potential causality graphs). This unifies special cases that previously were treated separately.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

We consider the recent formulation of the Algorithmic Lovász Local Lemma [1], [2] for finding objects that avoid "bad features", or "flaws". It extends the Moser-Tardos resampling algorithm [3] to more general discrete spaces. At each step the method picks a flaw present in the current state and "resamples" it using a "resampling oracle" provided by the user. However, it is less flexible than the Moser-Tardos method since [1], [2] require a specific flaw selection rule, whereas [3] allows an arbitrary rule (and thus can potentially be implemented more efficiently). We formulate a new "commutativity" condition, and prove that it is sufficient for an arbitrary rule to work. It also enables an efficient parallelization under an additional assumption. We then show that existing resampling oracles for perfect matchings and permutations do satisfy this condition. Finally, we generalize the precondition in [2] (in the case of symmetric potential causality graphs). This unifies special cases that previously were treated separately.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
算法Lovász局部引理中的交换性
我们考虑了算法Lovász局部引理[1],[2]的最新表述,用于寻找避免“坏特征”或“缺陷”的对象。它将Moser-Tardos重采样算法[3]扩展到更一般的离散空间。在每一步中,该方法都会选择当前状态中存在的一个缺陷,并使用用户提供的“重新采样oracle”对其进行“重新采样”。然而,它不如Moser-Tardos方法灵活,因为[1]、[2]需要特定的缺陷选择规则,而[3]允许任意规则(因此可能更有效地实现)。我们给出了一个新的“交换性”条件,并证明了它是任意规则成立的充分条件。它还可以在额外的假设下实现高效的并行化。然后,我们证明了现有的用于完美匹配和排列的重采样预言机确实满足这个条件。最后,我们推广了[2]中的前提条件(对称势因果图的情况下)。这统一了以前单独处理的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exponential Lower Bounds for Monotone Span Programs Truly Sub-cubic Algorithms for Language Edit Distance and RNA-Folding via Fast Bounded-Difference Min-Plus Product Polynomial-Time Tensor Decompositions with Sum-of-Squares Decremental Single-Source Reachability and Strongly Connected Components in Õ(m√n) Total Update Time NP-Hardness of Reed-Solomon Decoding and the Prouhet-Tarry-Escott Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1