Improving synthetic aperture radar detection using the automatic identification system

F. M. Vieira, F. Vincent, J. Tourneret, D. Bonacci, M. Spigai, M. Ansart, J. Richard
{"title":"Improving synthetic aperture radar detection using the automatic identification system","authors":"F. M. Vieira, F. Vincent, J. Tourneret, D. Bonacci, M. Spigai, M. Ansart, J. Richard","doi":"10.23919/IRS.2017.8008208","DOIUrl":null,"url":null,"abstract":"This paper studies a maritime vessel detection method based on the fusion of data obtained from two different sensors, namely a synthetic aperture radar (SAR) and an automatic identification system (AIS) embedded in a satellite. In this work we propose a detector that uses the vessel position provided by the AIS system to improve the radar detection performance. The problem is handled by a generalized likelihood ratio test leading to a detector whose test statistics has a simple closed form expression. The distribution of the test statistics under the hypotheses is also determined, allowing theoretical and simulated receiver operational characteristics (ROCs) to be compared. Our results indicate that the proposed method improves detection performance and motivates the joint use of raw radar data with AIS demodulated information for ship detection.","PeriodicalId":430241,"journal":{"name":"2017 18th International Radar Symposium (IRS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 18th International Radar Symposium (IRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IRS.2017.8008208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a maritime vessel detection method based on the fusion of data obtained from two different sensors, namely a synthetic aperture radar (SAR) and an automatic identification system (AIS) embedded in a satellite. In this work we propose a detector that uses the vessel position provided by the AIS system to improve the radar detection performance. The problem is handled by a generalized likelihood ratio test leading to a detector whose test statistics has a simple closed form expression. The distribution of the test statistics under the hypotheses is also determined, allowing theoretical and simulated receiver operational characteristics (ROCs) to be compared. Our results indicate that the proposed method improves detection performance and motivates the joint use of raw radar data with AIS demodulated information for ship detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用自动识别系统改进合成孔径雷达探测
本文研究了一种基于合成孔径雷达(SAR)和卫星自动识别系统(AIS)两种不同传感器数据融合的船舶检测方法。在这项工作中,我们提出了一种利用AIS系统提供的船舶位置来提高雷达探测性能的探测器。该问题由广义似然比检验处理,该检验统计量具有简单的封闭形式表达式。还确定了假设下测试统计量的分布,从而可以比较理论和模拟的接收器操作特性(ROCs)。我们的研究结果表明,该方法提高了检测性能,并促进了原始雷达数据与AIS解调信息的联合使用,用于船舶检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maritime Moving Target Indication and localisation with GNSS-based multistatic radar: Experimental proof of concept Ghost target identification by analysis of the Doppler distribution in automotive scenarios Passive components technology for THz-Monolithic Integrated Circuits (THz-MIC) Compressive sensing of up-sampled model and atomic norm for super-resolution radar Real-time capability of meteotsunami detection by WERA ocean radar system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1