Weak supervision using cell tracking annotation and image registration improves cell segmentation

N. A. Anoshina, D. Sorokin
{"title":"Weak supervision using cell tracking annotation and image registration improves cell segmentation","authors":"N. A. Anoshina, D. Sorokin","doi":"10.1109/IPTA54936.2022.9784140","DOIUrl":null,"url":null,"abstract":"Learning-based cell segmentation methods have proved to be very effective in cell tracking. The main difficulty of using machine learning is the lack of expert annotation of biomedical data. We propose a weakly-supervised approach that extends the amount of segmentation training data for image sequences where only a couple of frames are annotated. The approach uses the tracking annotations as weak labels and image registration to extend the segmentation annotation to the neighbouring frames. This technique was applied to cell segmentation step in the cell tracking problem. An experimental comparison of the baseline segmentation network trained on the data with pure GT annotation and the same segmentation network trained on the GT data and additional annotations generated with the proposed approach has been performed. The proposed weakly-supervised approach increased the IoU and SEG metrics on the data from the Cell Tracking Challenge.","PeriodicalId":381729,"journal":{"name":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eleventh International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA54936.2022.9784140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning-based cell segmentation methods have proved to be very effective in cell tracking. The main difficulty of using machine learning is the lack of expert annotation of biomedical data. We propose a weakly-supervised approach that extends the amount of segmentation training data for image sequences where only a couple of frames are annotated. The approach uses the tracking annotations as weak labels and image registration to extend the segmentation annotation to the neighbouring frames. This technique was applied to cell segmentation step in the cell tracking problem. An experimental comparison of the baseline segmentation network trained on the data with pure GT annotation and the same segmentation network trained on the GT data and additional annotations generated with the proposed approach has been performed. The proposed weakly-supervised approach increased the IoU and SEG metrics on the data from the Cell Tracking Challenge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用细胞跟踪注释和图像配准的弱监督改进了细胞分割
基于学习的细胞分割方法已被证明是非常有效的细胞跟踪方法。使用机器学习的主要困难是缺乏对生物医学数据的专家注释。我们提出了一种弱监督的方法,该方法扩展了只有几个帧被注释的图像序列的分割训练数据量。该方法使用跟踪标注作为弱标签,并使用图像配准将分割标注扩展到相邻帧。将该技术应用于细胞跟踪问题中的细胞分割步骤。实验比较了在纯GT标注数据上训练的基线分割网络和在使用该方法生成的GT数据和附加标注上训练的相同分割网络。提出的弱监督方法提高了细胞跟踪挑战数据的IoU和SEG指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Special Session 3: Visual Computing in Digital Humanities Complex Texture Features Learned by Applying Randomized Neural Network on Graphs AAEGAN Optimization by Purposeful Noise Injection for the Generation of Bright-Field Brain Organoid Images Towards Fast and Accurate Intimate Contact Recognition through Video Analysis Draco-Based Selective Crypto-Compression Method of 3D objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1