Investigations of Machine Learning Algorithms for High Efficiency Video Coding (HEVC)

N. Usha Bhanu, C. Saravanakumar
{"title":"Investigations of Machine Learning Algorithms for High Efficiency Video Coding (HEVC)","authors":"N. Usha Bhanu, C. Saravanakumar","doi":"10.1109/IConSCEPT57958.2023.10170546","DOIUrl":null,"url":null,"abstract":"The growing demand of high-resolution video on portable devices, the applications require higher coding efficiency, high throughput and low power for handling heterogenous types of video signals. This paper presents a survey on possibility of applying Machine Learning (ML) models in H.265/ HEVC video encoder unit. Higher computational complexity with respect to motion estimation, coding, and parallel processing architectures are required for HEVC. The existing HEVC algorithms are based on spatial temporal relationship which requires dynamic video sequences handling for fast changes in scenes. This paper focuses on the possible realization of machine learning algorithms for Rate Control (RC) in video sequences, Coding Unit (CU) depth decision, Neural network-based Motion Estimation and Compensation, adaptive de-blocking filter for reducing blocking artifacts and task driven semantic coding for real time video applications. The algorithms are surveyed with respect to the learning process used in various units of HEVC encoders and summarized in terms of parameters achieved and datasets used in the existing literature.","PeriodicalId":240167,"journal":{"name":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConSCEPT57958.2023.10170546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The growing demand of high-resolution video on portable devices, the applications require higher coding efficiency, high throughput and low power for handling heterogenous types of video signals. This paper presents a survey on possibility of applying Machine Learning (ML) models in H.265/ HEVC video encoder unit. Higher computational complexity with respect to motion estimation, coding, and parallel processing architectures are required for HEVC. The existing HEVC algorithms are based on spatial temporal relationship which requires dynamic video sequences handling for fast changes in scenes. This paper focuses on the possible realization of machine learning algorithms for Rate Control (RC) in video sequences, Coding Unit (CU) depth decision, Neural network-based Motion Estimation and Compensation, adaptive de-blocking filter for reducing blocking artifacts and task driven semantic coding for real time video applications. The algorithms are surveyed with respect to the learning process used in various units of HEVC encoders and summarized in terms of parameters achieved and datasets used in the existing literature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效视频编码(HEVC)的机器学习算法研究
随着便携式设备对高分辨率视频的需求日益增长,应用程序需要更高的编码效率、高吞吐量和低功耗来处理异构类型的视频信号。本文综述了机器学习模型在H.265/ HEVC视频编码器单元中应用的可能性。HEVC需要在运动估计、编码和并行处理架构方面具有更高的计算复杂度。现有的HEVC算法是基于时空关系的,需要对场景中快速变化的视频序列进行动态处理。本文重点研究了视频序列中用于速率控制(RC)的机器学习算法的可能实现、编码单元(CU)深度决策、基于神经网络的运动估计和补偿、用于减少阻塞伪影的自适应去块滤波器以及用于实时视频应用的任务驱动语义编码。针对HEVC编码器的各种单元所使用的学习过程对算法进行了调查,并根据现有文献中所获得的参数和使用的数据集进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three Port Full Bridge PFC Converter for Hybrid AC/DC/DC System with Fuzzy Logic Control ESH: A Non-Monotonic Activation Function For Image Classification Image Classification using Quantum Convolutional Neural Network Machine Learning Based Predictive Model for Intrusion Detection EV Sahayak: Android Assistance App for Electric Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1