G. Lemercier, F. Sekli-Belaïdi, V. Vajrala, E. Descamps, N. Sojic, S. Arbault, J. Sarry, P. Temple-Boyer, J. Launay
{"title":"Toward the analysis of mitochondria isolated from leukemic cells with electrochemically instrumented microwell arrays","authors":"G. Lemercier, F. Sekli-Belaïdi, V. Vajrala, E. Descamps, N. Sojic, S. Arbault, J. Sarry, P. Temple-Boyer, J. Launay","doi":"10.1109/TRANSDUCERS.2017.7994374","DOIUrl":null,"url":null,"abstract":"This work deals with the development of electrochemical transducers for the analysis of the metabolic status of mitochondria isolated from leukemic cells. It proposes the use of ring nanoelectrodes (RNE) integrated into microwell arrays for the simultaneous monitoring of the oxygen (O2) consumption and the hydrogen peroxide (H2O2) production. The sensor enabled the real-time recording of the oxygen consumption of approximately 10,000 isolated mitochondria. Solutions are now proposed to detect H2O2 production and to reduce the number of mitochondria under test, targeting the single mitochondrion analysis.","PeriodicalId":174774,"journal":{"name":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRANSDUCERS.2017.7994374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This work deals with the development of electrochemical transducers for the analysis of the metabolic status of mitochondria isolated from leukemic cells. It proposes the use of ring nanoelectrodes (RNE) integrated into microwell arrays for the simultaneous monitoring of the oxygen (O2) consumption and the hydrogen peroxide (H2O2) production. The sensor enabled the real-time recording of the oxygen consumption of approximately 10,000 isolated mitochondria. Solutions are now proposed to detect H2O2 production and to reduce the number of mitochondria under test, targeting the single mitochondrion analysis.