Efficient Downscaling of Satellite Oceanographic Data With Convolutional Neural Networks

N. Saxena
{"title":"Efficient Downscaling of Satellite Oceanographic Data With Convolutional Neural Networks","authors":"N. Saxena","doi":"10.1145/3397536.3429335","DOIUrl":null,"url":null,"abstract":"Space-borne satellite radiometers measure Sea Surface Temperature (SST), which is pivotal to studies of air-sea interactions and ocean features. Under clear sky conditions, high resolution measurements are obtainable. But under cloudy conditions, data analysis is constrained to the available low resolution measurements. We assess the efficiency of Deep Learning (DL) architectures, particularly Convolutional Neural Networks (CNN) to downscale oceanographic data from low spatial resolution (SR) to high SR. With a focus on SST Fields of Bay of Bengal, this study proves that Very Deep Super Resolution CNN can successfully reconstruct SST observations from 15 km SR to 5km SR, and 5km SR to 1km SR. This outcome calls attention to the significance of DL models explicitly trained for the reconstruction of high SR SST fields by using low SR data. Inference on DL models can act as a substitute to the existing computationally expensive downscaling technique: Dynamical Downsampling. The complete code is available on this Github Repository.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3429335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Space-borne satellite radiometers measure Sea Surface Temperature (SST), which is pivotal to studies of air-sea interactions and ocean features. Under clear sky conditions, high resolution measurements are obtainable. But under cloudy conditions, data analysis is constrained to the available low resolution measurements. We assess the efficiency of Deep Learning (DL) architectures, particularly Convolutional Neural Networks (CNN) to downscale oceanographic data from low spatial resolution (SR) to high SR. With a focus on SST Fields of Bay of Bengal, this study proves that Very Deep Super Resolution CNN can successfully reconstruct SST observations from 15 km SR to 5km SR, and 5km SR to 1km SR. This outcome calls attention to the significance of DL models explicitly trained for the reconstruction of high SR SST fields by using low SR data. Inference on DL models can act as a substitute to the existing computationally expensive downscaling technique: Dynamical Downsampling. The complete code is available on this Github Repository.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的卫星海洋数据降尺度研究
星载卫星辐射计测量海表温度(SST),这是研究海气相互作用和海洋特征的关键。在晴朗的天气条件下,可以获得高分辨率的测量结果。但在多云条件下,数据分析仅限于可用的低分辨率测量。我们评估了深度学习(DL)架构,特别是卷积神经网络(CNN)将海洋数据从低空间分辨率(SR)降阶到高空间分辨率的效率。以孟加拉湾的海温场为例,本研究证明了非常深超分辨率CNN可以成功地将海温观测数据从15 km SR重建到5km SR。这一结果引起了人们对利用低SR数据重建高SR海温场的DL模型的重视。基于深度学习模型的推理可以替代现有的计算成本很高的降尺度技术:动态降采样。完整的代码可以在这个Github存储库中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poet Distributed Spatiotemporal Trajectory Query Processing in SQL A Time-Windowed Data Structure for Spatial Density Maps Distributed Spatial-Keyword kNN Monitoring for Location-aware Pub/Sub Platooning Graph for Safer Traffic Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1