{"title":"Deconstructing commit","authors":"Gordon B. Bell, Mikko H. Lipasti","doi":"10.1109/ISPASS.2004.1291357","DOIUrl":null,"url":null,"abstract":"Many modern processors execute instructions out of their original program order to exploit instruction-level parallelism and achieve higher performance. However even though instructions can execute in an arbitrary order, they must eventually commit, or retire from execution, in program order. This constraint provides a safety mechanism to ensure that mis-speculated instructions are not inadvertently committed, but can consume valuable processor resources and severely limit the degree of parallelism exposed in a program. We assert that such a constraint is overly conservative, and propose conditions under which it can be relaxed. This paper deconstructs the notion of commit in an out-of-order processor, and examines the set of necessary conditions under which instructions can be permitted to retire out of program order. It provides a detailed analysis of the frequency and relative importance of these conditions, and discusses microarchitectural modifications that relax the in-order commit requirement. Overall, we found that for a given set of processor resources our technique achieves speedups of up to 68% and 8% for floating point and integer benchmarks, respectively. Conversely, because out-of-order commit allows more efficient utilization of cycle-time limiting resources, it can alternatively enable simpler designs with potentially higher clock frequencies.","PeriodicalId":188291,"journal":{"name":"IEEE International Symposium on - ISPASS Performance Analysis of Systems and Software, 2004","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on - ISPASS Performance Analysis of Systems and Software, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2004.1291357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46
Abstract
Many modern processors execute instructions out of their original program order to exploit instruction-level parallelism and achieve higher performance. However even though instructions can execute in an arbitrary order, they must eventually commit, or retire from execution, in program order. This constraint provides a safety mechanism to ensure that mis-speculated instructions are not inadvertently committed, but can consume valuable processor resources and severely limit the degree of parallelism exposed in a program. We assert that such a constraint is overly conservative, and propose conditions under which it can be relaxed. This paper deconstructs the notion of commit in an out-of-order processor, and examines the set of necessary conditions under which instructions can be permitted to retire out of program order. It provides a detailed analysis of the frequency and relative importance of these conditions, and discusses microarchitectural modifications that relax the in-order commit requirement. Overall, we found that for a given set of processor resources our technique achieves speedups of up to 68% and 8% for floating point and integer benchmarks, respectively. Conversely, because out-of-order commit allows more efficient utilization of cycle-time limiting resources, it can alternatively enable simpler designs with potentially higher clock frequencies.