DCU-ML at the FinNLP-2022 ERAI Task: Investigating the Transferability of Sentiment Analysis Data for Evaluating Rationales of Investors

Chenyang Lyu, Tianbo Ji, Liting Zhou
{"title":"DCU-ML at the FinNLP-2022 ERAI Task: Investigating the Transferability of Sentiment Analysis Data for Evaluating Rationales of Investors","authors":"Chenyang Lyu, Tianbo Ji, Liting Zhou","doi":"10.18653/v1/2022.finnlp-1.14","DOIUrl":null,"url":null,"abstract":"In this paper, we describe our system for the FinNLP-2022 shared task: Evaluating the Rationales of Amateur Investors (ERAI). The ERAI shared tasks focuses on mining profitable information from financial texts by predicting the possible Maximal Potential Profit (MPP) and Maximal Loss (ML) based on the posts from amateur investors. There are two sub-tasks in ERAI: Pairwise Comparison and Unsupervised Rank, both target on the prediction of MPP and ML. To tackle the two tasks, we frame this task as a text-pair classification task where the input consists of two documents and the output is the label of whether the first document will lead to higher MPP or lower ML. Specifically, we propose to take advantage of the transferability of Sentiment Analysis data with an assumption that a more positive text will lead to higher MPP or higher ML to facilitate the prediction of MPP and ML. In experiment on the ERAI blind test set, our systems trained on Sentiment Analysis data and ERAI training data ranked 1st and 8th in ML and MPP pairwise comparison respectively. Code available in this link.","PeriodicalId":331851,"journal":{"name":"Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth Workshop on Financial Technology and Natural Language Processing (FinNLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.finnlp-1.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we describe our system for the FinNLP-2022 shared task: Evaluating the Rationales of Amateur Investors (ERAI). The ERAI shared tasks focuses on mining profitable information from financial texts by predicting the possible Maximal Potential Profit (MPP) and Maximal Loss (ML) based on the posts from amateur investors. There are two sub-tasks in ERAI: Pairwise Comparison and Unsupervised Rank, both target on the prediction of MPP and ML. To tackle the two tasks, we frame this task as a text-pair classification task where the input consists of two documents and the output is the label of whether the first document will lead to higher MPP or lower ML. Specifically, we propose to take advantage of the transferability of Sentiment Analysis data with an assumption that a more positive text will lead to higher MPP or higher ML to facilitate the prediction of MPP and ML. In experiment on the ERAI blind test set, our systems trained on Sentiment Analysis data and ERAI training data ranked 1st and 8th in ML and MPP pairwise comparison respectively. Code available in this link.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DCU-ML在FinNLP-2022 ERAI任务:调查情绪分析数据的可转移性,以评估投资者的基本原理
在本文中,我们描述了FinNLP-2022共享任务:评估业余投资者的基本原理(ERAI)的系统。ERAI共享任务侧重于通过根据业余投资者的帖子预测可能的最大潜在利润(MPP)和最大损失(ML),从金融文本中挖掘有利可图的信息。在ERAI中有两个子任务:成对比较和无监督秩,都是针对MPP和ML的预测。为了解决这两个任务,我们将这个任务框架为文本对分类任务,其中输入由两个文档组成,输出是第一个文档是否会导致更高的MPP或更低的ML的标签。我们建议利用情感分析数据的可转移性,假设更积极的文本将导致更高的MPP或更高的ML,以促进MPP和ML的预测。在ERAI盲测试集的实验中,我们的系统训练的情感分析数据和ERAI训练数据在ML和MPP两两比较中分别排名第1和第8。代码可在此链接中获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AstBERT: Enabling Language Model for Financial Code Understanding with Abstract Syntax Trees Automatic Term and Sentence Classification Via Augmented Term and Pre-trained language model in ESG Taxonomy texts Ranking Environment, Social And Governance Related Concepts And Assessing Sustainability Aspect of Financial Texts TweetFinSent: A Dataset of Stock Sentiments on Twitter Using Transformer-based Models for Taxonomy Enrichment and Sentence Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1