Comparative Analysis on variants of Neural Networks: An Experimental Study

S. Vani, T. Madhusudhana Rao, Ch. Kannam Naidu
{"title":"Comparative Analysis on variants of Neural Networks: An Experimental Study","authors":"S. Vani, T. Madhusudhana Rao, Ch. Kannam Naidu","doi":"10.1109/ICACCS.2019.8728327","DOIUrl":null,"url":null,"abstract":"Neural Networks, with their remarkable capacity to get significance from convoluted information can be utilized to remove patterns that are too composite to be in any way seen by humans. A prepared neural network can be thought of as a specialist in the classification of data which is given to analyze. There are different kinds of Neural Networks like Artificial Neural Network (ANN), Feedforward Neural Network, Recurrent Neural Network(RNN), Recursive Recurrent Neural Network (RRNN), Convolutional Neural Network(CNN), Modular Neural Network (MNN), Restricted Boltzmann Machine (RBM) etc. In this paper, we have discussed the performance of ANN, CNN, RNN, and RBM where CNN has outplayed the remaining with accuracy of 97.81%.","PeriodicalId":249139,"journal":{"name":"2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCS.2019.8728327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Neural Networks, with their remarkable capacity to get significance from convoluted information can be utilized to remove patterns that are too composite to be in any way seen by humans. A prepared neural network can be thought of as a specialist in the classification of data which is given to analyze. There are different kinds of Neural Networks like Artificial Neural Network (ANN), Feedforward Neural Network, Recurrent Neural Network(RNN), Recursive Recurrent Neural Network (RRNN), Convolutional Neural Network(CNN), Modular Neural Network (MNN), Restricted Boltzmann Machine (RBM) etc. In this paper, we have discussed the performance of ANN, CNN, RNN, and RBM where CNN has outplayed the remaining with accuracy of 97.81%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络变体的比较分析:实验研究
神经网络具有从复杂信息中获得意义的非凡能力,可以用来去除那些过于复杂而无法被人类看到的模式。一个准备好的神经网络可以被认为是数据分类的专家。神经网络有人工神经网络(ANN)、前馈神经网络、递归神经网络(RNN)、递归递归神经网络(RRNN)、卷积神经网络(CNN)、模块化神经网络(MNN)、受限玻尔兹曼机(RBM)等。在本文中,我们讨论了ANN、CNN、RNN和RBM的性能,其中CNN以97.81%的准确率胜过其余的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object Detection and Tracking Approaches for Video Surveillance Over Camera Network A Systematic Literature Review for Early Detection of Type II Diabetes Agricultural Field Monitoring using IoT A Methodical Overview on Phishing Detection along with an Organized Way to Construct an Anti-Phishing Framework Mobile Edge Communication An overview of MEC in 5G
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1