Single Step Ahead Assessment of Solar Irradiation Using Ann Model Based on Various Combination Of Meterological Parameters

Anuj Gupta
{"title":"Single Step Ahead Assessment of Solar Irradiation Using Ann Model Based on Various Combination Of Meterological Parameters","authors":"Anuj Gupta","doi":"10.53799/ajse.v22i1.271","DOIUrl":null,"url":null,"abstract":"Solar energy is a valuable resource on earth but the availability of solar resources relies on meteorological variables. In this paper, forecasting models using the artificial neural network are developed by changing the input meteorological variables from five to seven. The two years data are used to train the model whereas the testing is performed using one year data on different seasons following single step ahead. The input parameters are relative humidity, pressure, temperature, solar zenith angle, wind speed, wind direction and perceptible water. Three artificial neural network models (ANN-I5, ANN-I6, ANN-I7) are developed to estimate the global horizontal irradiation and performance of all models are measured on the basis of Mean Absolute Percentage Error (MAPE), Relative Root Mean Square Error (RRMSE) and Correlation Coefficient (R2). Result indicates that ANN-I7 shown better performance as comparison to other developed models. The average MAPE and RRMSE of ANN models such as ANN-I7, ANN-I6,  ANN-I5 are 14.52%, 16.53%, 18.97% and 20.74%, 22.28%, 24.43% respectively. The ANN-I7 haiving an input meteorological parameters relative humidity, pressure, temperature, solar zenith angle, wind speed, wind direction and perceptible water showed good accuracy as comparison to other two developed models. This study indicates that accuracy of solar irradiation forecasting depends on meteorological parameters.  ","PeriodicalId":224436,"journal":{"name":"AIUB Journal of Science and Engineering (AJSE)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIUB Journal of Science and Engineering (AJSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53799/ajse.v22i1.271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Solar energy is a valuable resource on earth but the availability of solar resources relies on meteorological variables. In this paper, forecasting models using the artificial neural network are developed by changing the input meteorological variables from five to seven. The two years data are used to train the model whereas the testing is performed using one year data on different seasons following single step ahead. The input parameters are relative humidity, pressure, temperature, solar zenith angle, wind speed, wind direction and perceptible water. Three artificial neural network models (ANN-I5, ANN-I6, ANN-I7) are developed to estimate the global horizontal irradiation and performance of all models are measured on the basis of Mean Absolute Percentage Error (MAPE), Relative Root Mean Square Error (RRMSE) and Correlation Coefficient (R2). Result indicates that ANN-I7 shown better performance as comparison to other developed models. The average MAPE and RRMSE of ANN models such as ANN-I7, ANN-I6,  ANN-I5 are 14.52%, 16.53%, 18.97% and 20.74%, 22.28%, 24.43% respectively. The ANN-I7 haiving an input meteorological parameters relative humidity, pressure, temperature, solar zenith angle, wind speed, wind direction and perceptible water showed good accuracy as comparison to other two developed models. This study indicates that accuracy of solar irradiation forecasting depends on meteorological parameters.  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于不同气象参数组合的人工神经网络模型对太阳辐射的单步预估
太阳能是地球上宝贵的资源,但太阳能资源的可用性取决于气象变量。本文通过将输入气象变量从5个增加到7个,建立了基于人工神经网络的预报模型。使用两年的数据来训练模型,而使用一年的数据在不同的季节进行测试。输入参数为相对湿度、气压、温度、太阳天顶角、风速、风向和可感知水量。基于平均绝对百分比误差(MAPE)、相对均方根误差(RRMSE)和相关系数(R2),建立了3个人工神经网络模型(ANN-I5、ANN-I6、ANN-I7)来估计全球水平辐射,并测量了所有模型的性能。结果表明,ANN-I7与其他已开发的模型相比,具有更好的性能。ANN- i7、ANN- i6、ANN- i5模型的平均MAPE和RRMSE分别为14.52%、16.53%、18.97%和20.74%、22.28%、24.43%。在输入相对湿度、气压、温度、太阳天顶角、风速、风向和可感知水量等气象参数后,ANN-I7模式与其他两种模式相比具有较好的精度。研究表明,太阳辐照预报的准确性取决于气象参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Prediction of A Power Generation Gas Turbine Using An Optimized Artificial Neural Network Model Advancing Fuzzy Logic: A Hierarchical Fuzzy System Approach WVEHDD: Weighted Voting based Ensemble System for Heart Disease Detection Predictions of Malaysia Age-Specific Fertility Rates using the Lee-Carter and the Functional Data Approaches Performance Analysis of Automatic Generation Control for a Multi-Area Interconnected System Using Genetic Algorithm and Particle Swarm Optimization Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1