Wind Turbine Prediction using Deep Learning and Long Short Term Memory (LSTM)

Myvizhi. M., A. Abdel-Monem
{"title":"Wind Turbine Prediction using Deep Learning and Long Short Term Memory (LSTM)","authors":"Myvizhi. M., A. Abdel-Monem","doi":"10.54216/ijaaci.030205","DOIUrl":null,"url":null,"abstract":"Accurate forecasting is essential for the long-term success of adding wind energy to the national power system. In this study, we look at forecasting wind turbine using a LSTM deep learning model. To forecast potential outcomes for a time series, it is sufficient to initially obtain pertinent details from past data. While many methods struggle with understanding the long-term dependencies encoded in data sets, LSTM options, an instance of the strategy in deep learning, show potential for efficiently overcoming this challenge. An overview of LSTM's architecture and forward propagation method is provided initially. LSTM network is applied to the wind turbine prediction dataset. This dataset has 9 features and 6575 records. There are four performance matrices used to test the model. The four matrices are mean squared error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE). MAPE obtained the least error.","PeriodicalId":166689,"journal":{"name":"International Journal of Advances in Applied Computational Intelligence","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Applied Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54216/ijaaci.030205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate forecasting is essential for the long-term success of adding wind energy to the national power system. In this study, we look at forecasting wind turbine using a LSTM deep learning model. To forecast potential outcomes for a time series, it is sufficient to initially obtain pertinent details from past data. While many methods struggle with understanding the long-term dependencies encoded in data sets, LSTM options, an instance of the strategy in deep learning, show potential for efficiently overcoming this challenge. An overview of LSTM's architecture and forward propagation method is provided initially. LSTM network is applied to the wind turbine prediction dataset. This dataset has 9 features and 6575 records. There are four performance matrices used to test the model. The four matrices are mean squared error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE). MAPE obtained the least error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习和长短期记忆(LSTM)的风电机组预测
准确的预测对于在国家电力系统中增加风能的长期成功至关重要。在这项研究中,我们将使用LSTM深度学习模型来预测风力涡轮机。为了预测时间序列的潜在结果,最初从过去的数据中获得相关的细节就足够了。虽然许多方法都难以理解数据集中编码的长期依赖关系,但LSTM选项作为深度学习策略的一个实例,显示出有效克服这一挑战的潜力。首先概述了LSTM的体系结构和前向传播方法。将LSTM网络应用于风力机预测数据集。该数据集有9个特征和6575条记录。有四个性能矩阵用于测试模型。这四个矩阵分别是均方误差(MSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)。MAPE得到的误差最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Single Valued Neutrosophic Set for Selection of Water Supply in Intelligent Farming An Attentive Convolutional Recurrent Network for Fake News Detection Unveiling the Power of Convolutional Networks: Applied Computational Intelligence for Arrhythmia Detection from ECG Signals Employees Motivational Factors toward Knowledge Sharing: A Systematic Review Car Sharing Station Choice by using Interval Valued Neutrosophic WASPAS Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1