Tracking cell motion using GM-PHD

R. Juang, A. Levchenko, P. Burlina
{"title":"Tracking cell motion using GM-PHD","authors":"R. Juang, A. Levchenko, P. Burlina","doi":"10.1109/ISBI.2009.5193262","DOIUrl":null,"url":null,"abstract":"We present a method for tracking the movement of multiple cells and their lineage. We use the Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter, a multi-target tracking algorithm, to track the motion of multiple cells over time and to keep track of the lineage of cells as they spawn. We describe a spawning model for the GM-PHD filter as well as modifications to the original GM-PHD algorithm to track lineage. Experimental results are provided illustrating the approach for dense cell colonies.","PeriodicalId":272938,"journal":{"name":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"264 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2009.5193262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

We present a method for tracking the movement of multiple cells and their lineage. We use the Gaussian Mixture Probability Hypothesis Density (GM-PHD) filter, a multi-target tracking algorithm, to track the motion of multiple cells over time and to keep track of the lineage of cells as they spawn. We describe a spawning model for the GM-PHD filter as well as modifications to the original GM-PHD algorithm to track lineage. Experimental results are provided illustrating the approach for dense cell colonies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用GM-PHD跟踪细胞运动
我们提出了一种方法来跟踪运动的多个细胞和他们的血统。我们使用高斯混合概率假设密度(GM-PHD)滤波器,一种多目标跟踪算法,来跟踪多个细胞随时间的运动,并在细胞产生时跟踪细胞的谱系。我们描述了GM-PHD滤波器的产卵模型以及对原始GM-PHD算法的修改以跟踪血统。实验结果说明了该方法对密集细胞菌落的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic alignment of stacks of filament data Analysis of nerve activity and optical signals from mouse brain stem to identify cells generating respiratory rhythms Segmentation and classification of triple negative breast cancers using DCE-MRI Improved registration for large electron microscopy images Special purpose 3-D reconstruction and restoration algorithms for electron microscopy of nanoscale objects and an enabling software toolkit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1