Neurosymbolic Programming

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, Yisong Yue
{"title":"Neurosymbolic Programming","authors":"Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, Yisong Yue","doi":"10.1561/2500000049","DOIUrl":null,"url":null,"abstract":"We survey recent work on neurosymbolic programming, an emerging area that bridges the areas of deep learning and program synthesis. Like in classic machine learning, the goal here is to learn functions from data. However, these functions are represented as programs that can use neural modules in addition to symbolic primitives and are induced using a combination of symbolic search and gradient-based optimization. Neurosymbolic programming can offer multiple advantages over end-to-end deep learning. Programs can sometimes naturally represent long-horizon, procedural tasks that are difficult to perform using deep networks. Neurosymbolic representations are also, commonly, easier to interpret and formally verify than neural networks. The restrictions of a programming language can serve as a form of regularization and lead to more generalizable and data-efficient Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando SolarLezama and Yisong Yue (2021), “Neurosymbolic Programming”, Foundations and Trends® in Programming Languages: Vol. 7, No. 3, pp 158–243. DOI: 10.1561/2500000049. ©2021 S. Chaudhuri et al. The version of record is available at: http://dx.doi.org/10.1561/2500000049","PeriodicalId":376429,"journal":{"name":"Found. Trends Program. Lang.","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Program. Lang.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2500000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

We survey recent work on neurosymbolic programming, an emerging area that bridges the areas of deep learning and program synthesis. Like in classic machine learning, the goal here is to learn functions from data. However, these functions are represented as programs that can use neural modules in addition to symbolic primitives and are induced using a combination of symbolic search and gradient-based optimization. Neurosymbolic programming can offer multiple advantages over end-to-end deep learning. Programs can sometimes naturally represent long-horizon, procedural tasks that are difficult to perform using deep networks. Neurosymbolic representations are also, commonly, easier to interpret and formally verify than neural networks. The restrictions of a programming language can serve as a form of regularization and lead to more generalizable and data-efficient Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando SolarLezama and Yisong Yue (2021), “Neurosymbolic Programming”, Foundations and Trends® in Programming Languages: Vol. 7, No. 3, pp 158–243. DOI: 10.1561/2500000049. ©2021 S. Chaudhuri et al. The version of record is available at: http://dx.doi.org/10.1561/2500000049
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neurosymbolic编程
我们调查了最近在神经符号编程方面的工作,这是一个新兴的领域,它连接了深度学习和程序合成领域。和经典的机器学习一样,这里的目标是从数据中学习函数。然而,这些函数被表示为除了符号原语之外还可以使用神经模块的程序,并且使用符号搜索和基于梯度的优化的组合来诱导。与端到端深度学习相比,神经符号编程可以提供多种优势。程序有时可以自然地代表长期的、程序性的任务,这些任务很难用深度网络来执行。通常,神经符号表征也比神经网络更容易解释和正式验证。Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando SolarLezama和Yisong Yue(2021),“神经符号编程”,编程语言的基础和趋势®:第7卷,第3期,第155 - 243页。DOI: 10.1561 / 2500000049。©2021 S. Chaudhuri et al。记录的版本可在:http://dx.doi.org/10.1561/2500000049
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Refinement Types: A Tutorial Progress of Concurrent Objects Reconciling Abstraction with High Performance: A MetaOCaml approach Tutorial on Static Inference of Numeric Invariants by Abstract Interpretation Computer-Assisted Query Formulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1