{"title":"Neurosymbolic Programming","authors":"Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, Yisong Yue","doi":"10.1561/2500000049","DOIUrl":null,"url":null,"abstract":"We survey recent work on neurosymbolic programming, an emerging area that bridges the areas of deep learning and program synthesis. Like in classic machine learning, the goal here is to learn functions from data. However, these functions are represented as programs that can use neural modules in addition to symbolic primitives and are induced using a combination of symbolic search and gradient-based optimization. Neurosymbolic programming can offer multiple advantages over end-to-end deep learning. Programs can sometimes naturally represent long-horizon, procedural tasks that are difficult to perform using deep networks. Neurosymbolic representations are also, commonly, easier to interpret and formally verify than neural networks. The restrictions of a programming language can serve as a form of regularization and lead to more generalizable and data-efficient Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando SolarLezama and Yisong Yue (2021), “Neurosymbolic Programming”, Foundations and Trends® in Programming Languages: Vol. 7, No. 3, pp 158–243. DOI: 10.1561/2500000049. ©2021 S. Chaudhuri et al. The version of record is available at: http://dx.doi.org/10.1561/2500000049","PeriodicalId":376429,"journal":{"name":"Found. Trends Program. Lang.","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Program. Lang.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2500000049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Neurosymbolic编程
我们调查了最近在神经符号编程方面的工作,这是一个新兴的领域,它连接了深度学习和程序合成领域。和经典的机器学习一样,这里的目标是从数据中学习函数。然而,这些函数被表示为除了符号原语之外还可以使用神经模块的程序,并且使用符号搜索和基于梯度的优化的组合来诱导。与端到端深度学习相比,神经符号编程可以提供多种优势。程序有时可以自然地代表长期的、程序性的任务,这些任务很难用深度网络来执行。通常,神经符号表征也比神经网络更容易解释和正式验证。Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando SolarLezama和Yisong Yue(2021),“神经符号编程”,编程语言的基础和趋势®:第7卷,第3期,第155 - 243页。DOI: 10.1561 / 2500000049。©2021 S. Chaudhuri et al。记录的版本可在:http://dx.doi.org/10.1561/2500000049
本文章由计算机程序翻译,如有差异,请以英文原文为准。