SISO method using improved modified pole clustering and genetic algorithm

J. Singh, C. Vishwakarma, K. Chatterjee
{"title":"SISO method using improved modified pole clustering and genetic algorithm","authors":"J. Singh, C. Vishwakarma, K. Chatterjee","doi":"10.1109/ENERGYECONOMICS.2015.7235117","DOIUrl":null,"url":null,"abstract":"To reduce the order of the large-scale dynamic systems, a method has been proposed by merging improved modified pole clustering and Genetic Algorithm. Reduced order denominator and numerator polynomial is obtained via improved modified pole clustering technique and Genetic Algorithm respectively. The method produces `k' number of reduced order systems for kth - order reduction. A numerical example has been taken from the literature to show the viability of the proposed mixed method and also compared with existing order reduction methods.","PeriodicalId":130355,"journal":{"name":"2015 International Conference on Energy Economics and Environment (ICEEE)","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Energy Economics and Environment (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYECONOMICS.2015.7235117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To reduce the order of the large-scale dynamic systems, a method has been proposed by merging improved modified pole clustering and Genetic Algorithm. Reduced order denominator and numerator polynomial is obtained via improved modified pole clustering technique and Genetic Algorithm respectively. The method produces `k' number of reduced order systems for kth - order reduction. A numerical example has been taken from the literature to show the viability of the proposed mixed method and also compared with existing order reduction methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SISO方法采用改进的改进极点聚类和遗传算法
为了降低大型动态系统的阶数,提出了一种将改进的修正极点聚类与遗传算法相结合的方法。通过改进的修正极点聚类技术和遗传算法分别得到降阶分母和分子多项式。该方法为第k阶约简产生了k个约阶系统。从文献中选取了一个数值算例,证明了该混合方法的可行性,并与现有的降阶方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Letter of acquisition Smart grid implementation in India — A case study of Puducherry Pilot Project, India One hour ahead load forecast of PJM electricity market & UPPCL Comparative study of optimization algorithms for enhancement of small signal stability by designing PSS for multi-machine power system Aging leader and challenger based PSO for harmonic mitigation using SAPF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1