The Design of Oxygen Concentration and Flowrate in CPAP

A. Putra, T. Indrato, L. Soetjiatie
{"title":"The Design of Oxygen Concentration and Flowrate in CPAP","authors":"A. Putra, T. Indrato, L. Soetjiatie","doi":"10.35882/JEEEMI.V1I1.2","DOIUrl":null,"url":null,"abstract":"Measuring oxygen concentration and measuring the flow of oxygen is a tool used to measure the percentage of oxygen content and oxygen flow rate in CPAP. This tool uses the OCS-03F sensor, with Arduino NANO processors then displayed on the 2X16 character LCD. Measuring the percentage of oxygen content and oxygen flow rate is carried out on CPAP for 5 measurements. The research and manufacture of this module uses the Pre-experimental method with the After Only Design design, which examines the \"Oxygen Analyzer\", which results in measurements compared to the traced tools to obtain high accuracy values. Based on the results of measurements on the CPAP tool at Dr. Soetomo Surabaya Hospital with oxygen level settings of 21%, 30%, 40%, 50% 60%, 70%, 80%, 90%, 100% while setting the oxygen measurement rate 1L/m, 2L /m, 3L/m, 4L/m, 5L/m, 6L/m, 7L//m, 8L/m, 9L/m 10L/m. Each measurement was carried out 5 times. For the measurement of oxygen levels the biggest error value is 5% and the smallest -0,06% while for the measurement of oxygen flow rate the biggest error value is 4% and the smallest is 0%. Based on the results of the analysis of the manufacture of oxygen levels and oxygen flow rates, it can be concluded that the manufacture of oxygen concentration measuring instruments and oxygen flow rate can work well.","PeriodicalId":369032,"journal":{"name":"Journal of Electronics, Electromedical Engineering, and Medical Informatics","volume":"313 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronics, Electromedical Engineering, and Medical Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35882/JEEEMI.V1I1.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Measuring oxygen concentration and measuring the flow of oxygen is a tool used to measure the percentage of oxygen content and oxygen flow rate in CPAP. This tool uses the OCS-03F sensor, with Arduino NANO processors then displayed on the 2X16 character LCD. Measuring the percentage of oxygen content and oxygen flow rate is carried out on CPAP for 5 measurements. The research and manufacture of this module uses the Pre-experimental method with the After Only Design design, which examines the "Oxygen Analyzer", which results in measurements compared to the traced tools to obtain high accuracy values. Based on the results of measurements on the CPAP tool at Dr. Soetomo Surabaya Hospital with oxygen level settings of 21%, 30%, 40%, 50% 60%, 70%, 80%, 90%, 100% while setting the oxygen measurement rate 1L/m, 2L /m, 3L/m, 4L/m, 5L/m, 6L/m, 7L//m, 8L/m, 9L/m 10L/m. Each measurement was carried out 5 times. For the measurement of oxygen levels the biggest error value is 5% and the smallest -0,06% while for the measurement of oxygen flow rate the biggest error value is 4% and the smallest is 0%. Based on the results of the analysis of the manufacture of oxygen levels and oxygen flow rates, it can be concluded that the manufacture of oxygen concentration measuring instruments and oxygen flow rate can work well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CPAP氧浓度及流量的设计
测氧浓度和测氧流量是CPAP中测量氧含量百分比和氧流量的工具。该工具使用OCS-03F传感器,然后在2X16字符LCD上显示Arduino NANO处理器。在CPAP上进行了5次氧含量百分比和氧流量的测量。该模块的研究和制造采用了预实验方法和After Only Design设计,该设计检查了“氧气分析仪”,结果测量与跟踪工具进行比较,以获得高精度值。根据suetomo Surabaya医生医院CPAP工具的测量结果,氧气水平设置为21%,30%,40%,50%,60%,70%,80%,90%,100%,同时设置氧气测量率1L/m, 2L /m, 3L/m, 4L/m, 5L/m, 6L/m, 7L/ m, 8L/m, 9L/m 10L/m。每次测量5次。测量氧含量时,最大误差值为5%,最小误差值为- 0.06%;测量氧流量时,最大误差值为4%,最小误差值为0%。根据对氧浓度和氧流量的制造结果分析,可以得出制造的氧浓度测量仪和氧流量可以很好地工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting the Need for Cardiovascular Surgery: A Comparative Study of Machine Learning Models A Comparative Study of Convolutional Neural Network in Detecting Blast Cells for Diagnose Acute Myeloid Leukemia A Comparative Study of Machine Learning Methods for Baby Cry Detection Using MFCC Features Analysis of Multimodal Biosignals during Surprise Conditions Correlates with Psychological Traits Evaluation of two biometric access control systems using the Susceptible-Infected-Recovered model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1