Maximum Variance-based EEG Time Bin Selection for Decoding of Imagined Hand Movement Directions in Brain Computer Interface

Sagila Gangadharan K, Benzy V. K, A. Vinod
{"title":"Maximum Variance-based EEG Time Bin Selection for Decoding of Imagined Hand Movement Directions in Brain Computer Interface","authors":"Sagila Gangadharan K, Benzy V. K, A. Vinod","doi":"10.1109/BioSMART54244.2021.9677887","DOIUrl":null,"url":null,"abstract":"Motor-Imagery-based Brain Computer Interface (MI-BCI) decodes the parameters of imagined motor movement and translates it into control commands to the external world. It has potential applications in neurorehabilitation and development of assistive technology. This paper investigates the Electroencephalogram (EEG) correlates of direction parameters of a center-out hand movement imagination task in right and left directions. A variance-based time bin selection algorithm is proposed to select the most discriminative EEG time segment for directional classification of movement imagination. The discriminative EEG features carrying motor imagery (MI) directional information are extracted from the selected EEG time segment using the wavelet-common spatial pattern (WCSP) algorithm. The WCSP features are classified using Support Vector Machine classifier resulting in a cross validated classification accuracy of 71% between left versus right MI directions of 15 subjects.","PeriodicalId":286026,"journal":{"name":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Bio-Engineering for Smart Technologies (BioSMART)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioSMART54244.2021.9677887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Motor-Imagery-based Brain Computer Interface (MI-BCI) decodes the parameters of imagined motor movement and translates it into control commands to the external world. It has potential applications in neurorehabilitation and development of assistive technology. This paper investigates the Electroencephalogram (EEG) correlates of direction parameters of a center-out hand movement imagination task in right and left directions. A variance-based time bin selection algorithm is proposed to select the most discriminative EEG time segment for directional classification of movement imagination. The discriminative EEG features carrying motor imagery (MI) directional information are extracted from the selected EEG time segment using the wavelet-common spatial pattern (WCSP) algorithm. The WCSP features are classified using Support Vector Machine classifier resulting in a cross validated classification accuracy of 71% between left versus right MI directions of 15 subjects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于最大方差的脑机接口想象手部运动方向的EEG时间Bin选择
基于运动图像的脑机接口(MI-BCI)对想象的运动参数进行解码,并将其转化为对外部世界的控制命令。它在神经康复和辅助技术开发方面具有潜在的应用前景。研究了手向外运动想象任务在左右两个方向上的方向参数的脑电图相关关系。提出了一种基于方差的时间bin选择算法,选择最具判别性的脑电信号时间片段进行运动想象的定向分类。采用小波-公共空间模式(WCSP)算法,从选取的脑电时间片段中提取带有运动意象(MI)方向信息的判别性脑电特征。使用支持向量机分类器对WCSP特征进行分类,导致15个受试者的左右MI方向的交叉验证分类准确率为71%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Electrode Ranking Method for Single Trial Detection of EEG Error-Related Potentials Efficacy of AR Haptic Simulation for Nursing Student Education In silico study of sensitivity of polymeric prism-based surface plasmon resonance sensors based on graphene and molybdenum disulfide layers A Social Robot with Conversational Capabilities for Visitor Reception: Design and Framework MICSurv: Medical Image Clustering for Survival risk group identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1