Guangwu Cui, R. Shen, Yingfeng Chen, Juan Zou, Shengxiang Yang, Changjie Fan, Jinghua Zheng
{"title":"Reinforced Evolutionary Algorithms for Game Difficulty Control","authors":"Guangwu Cui, R. Shen, Yingfeng Chen, Juan Zou, Shengxiang Yang, Changjie Fan, Jinghua Zheng","doi":"10.1145/3446132.3446165","DOIUrl":null,"url":null,"abstract":"In the field of game designing, artificial intelligence is used to generate responsive, adaptive, or intelligent behaviors primarily in Non-Player-Characters (NPCs). There is a large demand for controlling game AI since a variety of players expect to be provided NPC opponents with appropriate difficulties to improve their game experience. However, to the best of our knowledge, a few works are focusing on this problem. In this paper, we firstly present a Reinforced Evolutionary Algorithm based on the Difficulty-Difference objective (REA-DD) to the DLAI problem, which combines reinforcement learning and evolutionary algorithms. REA-DD is able to generate the desired difficulty level of game AI accurately. Nonetheless, REA can only obtain a kind of game AI in each run. To improve efficiency, another algorithm based on Multi-objective Optimization is proposed, regarded as RMOEA-DD, which obtains DLAI after one run. Experiments on the game Pong from ALE and apply on a commercial game named The Ghost Story to show that our algorithms provide valid methods to the DLAI problem both in the term of controlling accuracy and efficiency.","PeriodicalId":125388,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446132.3446165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In the field of game designing, artificial intelligence is used to generate responsive, adaptive, or intelligent behaviors primarily in Non-Player-Characters (NPCs). There is a large demand for controlling game AI since a variety of players expect to be provided NPC opponents with appropriate difficulties to improve their game experience. However, to the best of our knowledge, a few works are focusing on this problem. In this paper, we firstly present a Reinforced Evolutionary Algorithm based on the Difficulty-Difference objective (REA-DD) to the DLAI problem, which combines reinforcement learning and evolutionary algorithms. REA-DD is able to generate the desired difficulty level of game AI accurately. Nonetheless, REA can only obtain a kind of game AI in each run. To improve efficiency, another algorithm based on Multi-objective Optimization is proposed, regarded as RMOEA-DD, which obtains DLAI after one run. Experiments on the game Pong from ALE and apply on a commercial game named The Ghost Story to show that our algorithms provide valid methods to the DLAI problem both in the term of controlling accuracy and efficiency.