{"title":"Decentralizing Watchtowers for Payment Channels using IPFS","authors":"Hannes Bönisch, Matthias Grundmann","doi":"10.1109/ICDCSW56584.2022.00015","DOIUrl":null,"url":null,"abstract":"Payment channels have been proposed as a way to improve the scalability of blockchains such as Bitcoin. However, payment channel protocols require that participating parties watch the blockchain regularly for new transactions. If a party observes, in a given period of time, a fraudulent transaction that closes the payment channel in an outdated state, the fraudulent transaction can be revoked. Previous work has proposed to outsource this task to a third party, a so called watchtower. A user of a payment channel employs a dedicated watchtower and sends the data to the watchtower that the watchtower requires to revoke fraudulent transactions. In this paper, we replace the strict binding of a user to a watchtower by a decentralized approach for watchtowers that requires no direct interaction between a party of a payment channel and the watchtower. This decentralized approach uses IPFS to publicly store the information required by a watchtower. With this approach, anyone can detect and revoke a fraud by watching the blockchain and reading a file from IPFS that contains information for each outdated commitment transaction. A reward for successful revocations can be used as incentive.","PeriodicalId":357138,"journal":{"name":"2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 42nd International Conference on Distributed Computing Systems Workshops (ICDCSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCSW56584.2022.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Payment channels have been proposed as a way to improve the scalability of blockchains such as Bitcoin. However, payment channel protocols require that participating parties watch the blockchain regularly for new transactions. If a party observes, in a given period of time, a fraudulent transaction that closes the payment channel in an outdated state, the fraudulent transaction can be revoked. Previous work has proposed to outsource this task to a third party, a so called watchtower. A user of a payment channel employs a dedicated watchtower and sends the data to the watchtower that the watchtower requires to revoke fraudulent transactions. In this paper, we replace the strict binding of a user to a watchtower by a decentralized approach for watchtowers that requires no direct interaction between a party of a payment channel and the watchtower. This decentralized approach uses IPFS to publicly store the information required by a watchtower. With this approach, anyone can detect and revoke a fraud by watching the blockchain and reading a file from IPFS that contains information for each outdated commitment transaction. A reward for successful revocations can be used as incentive.