Optimal Denoising in Redundant Bases

M. Raphan, Eero P. Simoncelli
{"title":"Optimal Denoising in Redundant Bases","authors":"M. Raphan, Eero P. Simoncelli","doi":"10.1109/ICIP.2007.4379259","DOIUrl":null,"url":null,"abstract":"Image denoising methods are often based on estimators chosen to minimize mean squared error (MSE) within the sub-bands of a multi-scale decomposition. But this does not guarantee optimal MSE performance in the image domain, unless the decomposition is orthonormal. We prove that despite this suboptimality, the expected image-domain MSE resulting from a representation that is made redundant through spatial replication of basis functions (e.g., cycle-spinning) is less than or equal to that resulting from the original non-redundant representation. We also develop an extension of Stein's unbiased risk estimator (SURE) that allows minimization of the image-domain MSE for estimators that operate on subbands of a redundant decomposition. We implement an example, jointly optimizing the parameters of scalar estimators applied to each subband of an overcomplete representation, and demonstrate substantial MSE improvement over the sub-optimal application of SURE within individual subbands.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"1119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Image denoising methods are often based on estimators chosen to minimize mean squared error (MSE) within the sub-bands of a multi-scale decomposition. But this does not guarantee optimal MSE performance in the image domain, unless the decomposition is orthonormal. We prove that despite this suboptimality, the expected image-domain MSE resulting from a representation that is made redundant through spatial replication of basis functions (e.g., cycle-spinning) is less than or equal to that resulting from the original non-redundant representation. We also develop an extension of Stein's unbiased risk estimator (SURE) that allows minimization of the image-domain MSE for estimators that operate on subbands of a redundant decomposition. We implement an example, jointly optimizing the parameters of scalar estimators applied to each subband of an overcomplete representation, and demonstrate substantial MSE improvement over the sub-optimal application of SURE within individual subbands.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冗余基的最优去噪
图像去噪方法通常基于在多尺度分解的子带内选择最小化均方误差(MSE)的估计器。但这并不能保证在图像域的最佳MSE性能,除非分解是标准正交的。我们证明,尽管存在这种次优性,但通过基函数的空间复制(例如,循环旋转)使表示冗余的期望图像域MSE小于或等于原始非冗余表示产生的期望图像域MSE。我们还开发了Stein的无偏风险估计器(SURE)的扩展,它允许在冗余分解的子带上操作的估计器的图像域MSE最小化。我们实现了一个例子,共同优化了应用于过完备表示的每个子带的标量估计器的参数,并证明了在单个子带内应用SURE的次优MSE的显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Block-Based Gradient Domain High Dynamic Range Compression Design for Real-Time Applications Generation of Layered Depth Images from Multi-View Video Detection Strategies for Image Cube Trajectory Analysis An Efficient Compression Algorithm for Hyperspectral Images Based on Correlation Coefficients Adaptive Three Dimensional Wavelet Zerotree Coding Enabling Introduction of Stereoscopic (3D) Video: Formats and Compression Standards
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1