Forward-looking criteria for the certification of quantum key distribution (Conference Presentation)

Marco Lucamarini, J. Dynes, Zhiliang Yuan, M. Ward, A. Shields
{"title":"Forward-looking criteria for the certification of quantum key distribution (Conference Presentation)","authors":"Marco Lucamarini, J. Dynes, Zhiliang Yuan, M. Ward, A. Shields","doi":"10.1117/12.2317935","DOIUrl":null,"url":null,"abstract":"Technological advances in quantum computers and number theory have the potential to compromise the security of existing cryptographic protocols. Quantum key distribution (QKD) offers the possibility of information theoretic security and is theoretically unbreakable. Therefore it is the natural candidate to face the above digital threat. \nHowever, in implementing QKD, it is important to check that the components employed do not deviate from their expected behaviour, to avoid opening the door to new security loopholes [1]. For this reason, it is necessary to characterise the real behaviour of the components, build reliable models and include them in the security analysis.\nHere we introduce a set of techniques and measurements to ease this characterisation process. We discuss explicit examples applied to the source [2], the boundaries [3] and the detection unit [4] of a QKD apparatus. These methods pave the way to the future certification of QKD systems.\n[1] K. Tamaki, M. Curty, and M. Lucamarini, “Decoy-state quantum key distribution with a leaky source,” New J. Phys 18, 65008 (2016).\n[2] J. F. Dynes et al., “Testing the photon-number statistics of a quantum key distribution light source,” arXiv:1711.00440 (2017).\n[3] M. Lucamarini et al., “Practical Security Bounds Against the Trojan-Horse Attack in Quantum Key Distribution,” Phys. Rev. X 5, 031030 (2015).\n[4] A. Koehler-Sidki et al., “Setting best practice criteria for self-differencing avalanche photodiodes in quantum key distribution,” SPIE Proc. 10442, Quant. Inf. Sci. Tech. III, 104420L (2017).","PeriodicalId":279431,"journal":{"name":"Quantum Technologies 2018","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Technologies 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2317935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Technological advances in quantum computers and number theory have the potential to compromise the security of existing cryptographic protocols. Quantum key distribution (QKD) offers the possibility of information theoretic security and is theoretically unbreakable. Therefore it is the natural candidate to face the above digital threat. However, in implementing QKD, it is important to check that the components employed do not deviate from their expected behaviour, to avoid opening the door to new security loopholes [1]. For this reason, it is necessary to characterise the real behaviour of the components, build reliable models and include them in the security analysis. Here we introduce a set of techniques and measurements to ease this characterisation process. We discuss explicit examples applied to the source [2], the boundaries [3] and the detection unit [4] of a QKD apparatus. These methods pave the way to the future certification of QKD systems. [1] K. Tamaki, M. Curty, and M. Lucamarini, “Decoy-state quantum key distribution with a leaky source,” New J. Phys 18, 65008 (2016). [2] J. F. Dynes et al., “Testing the photon-number statistics of a quantum key distribution light source,” arXiv:1711.00440 (2017). [3] M. Lucamarini et al., “Practical Security Bounds Against the Trojan-Horse Attack in Quantum Key Distribution,” Phys. Rev. X 5, 031030 (2015). [4] A. Koehler-Sidki et al., “Setting best practice criteria for self-differencing avalanche photodiodes in quantum key distribution,” SPIE Proc. 10442, Quant. Inf. Sci. Tech. III, 104420L (2017).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子密钥分发认证的前瞻性标准(会议介绍)
量子计算机和数论的技术进步有可能危及现有密码协议的安全性。量子密钥分发(QKD)提供了信息理论上安全的可能性,并且在理论上是不可破解的。因此,面对上述数字威胁,它是自然的候选者。然而,在实现QKD时,重要的是要检查所使用的组件不会偏离其预期行为,以避免打开新的安全漏洞[1]的大门。出于这个原因,有必要描述组件的真实行为,构建可靠的模型并将它们包含在安全性分析中。在这里,我们将介绍一组技术和测量方法来简化这一特征描述过程。我们讨论了应用于QKD装置的源[2]、边界[3]和检测单元[4]的显式示例。这些方法为QKD系统的未来认证铺平了道路J. Tamaki, M. Curty, M. Lucamarini,“基于泄漏源的量子密钥分配”,物理学报,18,65008 (2016). b[2]J. F. Dynes等,“量子密钥分配光源的光子数统计测试”,光子学报,vol . 39 (2017). bbb10M. Lucamarini et al.,“量子密钥分发中针对特洛伊木马攻击的实际安全边界”,物理学。Rev. X 5, 031030 (2015).[4]A. Koehler-Sidki et al.,“自差分雪崩光电二极管在量子密钥分配中的最佳实践标准”,SPIE Proc. 10442, Quant. Inf. Sci。技术三,104420L(2017)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Front Matter: Volume 10674 Optical key distribution enhanced by optical injection locking (Conference Presentation) Single photon extraction from defects in hBN using a tapered fiber (Conference Presentation) Pilot comparison on the measurement of detection efficiency of InGaAs/InP single-photon detectors (Conference Presentation) LiY1-xHoxF4: a candidate material for the implementation of solid state qubits (Conference Presentation)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1