{"title":"A Semi-supervised Generalized VAE Framework for Abnormality Detection using One-Class Classification","authors":"Renuka Sharma, Satvik Mashkaria, Suyash P. Awate","doi":"10.1109/WACV51458.2022.00137","DOIUrl":null,"url":null,"abstract":"Abnormality detection is a one-class classification (OCC) problem where the methods learn either a generative model of the inlier class (e.g., in the variants of kernel principal component analysis) or a decision boundary to encapsulate the inlier class (e.g., in the one-class variants of the support vector machine). Learning schemes for OCC typically train on data solely from the inlier class, but some recent OCC methods have proposed semi-supervised extensions that also leverage a small amount of training data from outlier classes. Other recent methods extend existing principles to employ deep neural network (DNN) models for learning (for the inlier class) either latent-space distributions or autoencoders, but not both. We propose a semi-supervised variational formulation, leveraging generalized-Gaussian (GG) models leading to data-adaptive, robust, and uncertainty-aware distribution modeling in both latent space and image space. We propose a reparameterization for sampling from the latent-space GG to enable backpropagation-based optimization. Results on many publicly available real-world image sets and a synthetic image set show the benefits of our method over existing methods.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abnormality detection is a one-class classification (OCC) problem where the methods learn either a generative model of the inlier class (e.g., in the variants of kernel principal component analysis) or a decision boundary to encapsulate the inlier class (e.g., in the one-class variants of the support vector machine). Learning schemes for OCC typically train on data solely from the inlier class, but some recent OCC methods have proposed semi-supervised extensions that also leverage a small amount of training data from outlier classes. Other recent methods extend existing principles to employ deep neural network (DNN) models for learning (for the inlier class) either latent-space distributions or autoencoders, but not both. We propose a semi-supervised variational formulation, leveraging generalized-Gaussian (GG) models leading to data-adaptive, robust, and uncertainty-aware distribution modeling in both latent space and image space. We propose a reparameterization for sampling from the latent-space GG to enable backpropagation-based optimization. Results on many publicly available real-world image sets and a synthetic image set show the benefits of our method over existing methods.