A Semi-supervised Generalized VAE Framework for Abnormality Detection using One-Class Classification

Renuka Sharma, Satvik Mashkaria, Suyash P. Awate
{"title":"A Semi-supervised Generalized VAE Framework for Abnormality Detection using One-Class Classification","authors":"Renuka Sharma, Satvik Mashkaria, Suyash P. Awate","doi":"10.1109/WACV51458.2022.00137","DOIUrl":null,"url":null,"abstract":"Abnormality detection is a one-class classification (OCC) problem where the methods learn either a generative model of the inlier class (e.g., in the variants of kernel principal component analysis) or a decision boundary to encapsulate the inlier class (e.g., in the one-class variants of the support vector machine). Learning schemes for OCC typically train on data solely from the inlier class, but some recent OCC methods have proposed semi-supervised extensions that also leverage a small amount of training data from outlier classes. Other recent methods extend existing principles to employ deep neural network (DNN) models for learning (for the inlier class) either latent-space distributions or autoencoders, but not both. We propose a semi-supervised variational formulation, leveraging generalized-Gaussian (GG) models leading to data-adaptive, robust, and uncertainty-aware distribution modeling in both latent space and image space. We propose a reparameterization for sampling from the latent-space GG to enable backpropagation-based optimization. Results on many publicly available real-world image sets and a synthetic image set show the benefits of our method over existing methods.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abnormality detection is a one-class classification (OCC) problem where the methods learn either a generative model of the inlier class (e.g., in the variants of kernel principal component analysis) or a decision boundary to encapsulate the inlier class (e.g., in the one-class variants of the support vector machine). Learning schemes for OCC typically train on data solely from the inlier class, but some recent OCC methods have proposed semi-supervised extensions that also leverage a small amount of training data from outlier classes. Other recent methods extend existing principles to employ deep neural network (DNN) models for learning (for the inlier class) either latent-space distributions or autoencoders, but not both. We propose a semi-supervised variational formulation, leveraging generalized-Gaussian (GG) models leading to data-adaptive, robust, and uncertainty-aware distribution modeling in both latent space and image space. We propose a reparameterization for sampling from the latent-space GG to enable backpropagation-based optimization. Results on many publicly available real-world image sets and a synthetic image set show the benefits of our method over existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于单类分类的半监督广义VAE异常检测框架
异常检测是一个单类分类(OCC)问题,其中方法要么学习内叶类的生成模型(例如,在核主成分分析的变体中),要么学习封装内叶类的决策边界(例如,在支持向量机的单类变体中)。OCC的学习方案通常只对来自离群类的数据进行训练,但最近一些OCC方法提出了半监督扩展,也利用了来自离群类的少量训练数据。其他最近的方法扩展了现有的原理,使用深度神经网络(DNN)模型来学习(对于早期类)潜在空间分布或自动编码器,但不是两者都使用。我们提出了一种半监督变分公式,利用广义高斯(GG)模型,在潜在空间和图像空间中实现数据自适应、鲁棒和不确定性感知的分布建模。我们提出了从潜在空间GG采样的重新参数化,以实现基于反向传播的优化。在许多公开可用的真实世界图像集和合成图像集上的结果显示了我们的方法比现有方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Learning for Human Sensing Using Radio Signals AirCamRTM: Enhancing Vehicle Detection for Efficient Aerial Camera-based Road Traffic Monitoring QUALIFIER: Question-Guided Self-Attentive Multimodal Fusion Network for Audio Visual Scene-Aware Dialog Transductive Weakly-Supervised Player Detection using Soccer Broadcast Videos Inpaint2Learn: A Self-Supervised Framework for Affordance Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1