mpiPython: A Robust Python MPI Binding

Hee-Cheon Park, Joshus DeNio, Jeongyun Choi, Hanku Lee
{"title":"mpiPython: A Robust Python MPI Binding","authors":"Hee-Cheon Park, Joshus DeNio, Jeongyun Choi, Hanku Lee","doi":"10.1109/ICICT50521.2020.00023","DOIUrl":null,"url":null,"abstract":"For the last two decades, Python has become one of the most popular programming languages and been used to develop and analyze data-intensive scientific and engineering applications and in the areas such as Bigdata Analytics, Social Media, Data Science, Physics, Psychology, Healthcare, Political Science, etc. Moreover, demand of supporting Python data-parallel applications for those areas is rapidly growing. There have been international efforts to produce a message passing interface for Python bindings to support parallel computing, but specific challenges still remain to improve Python bindings. The main purpose of this paper is to introduce our MPI Python binding, called mpiPython, with the MPI standard communication API. In this paper, we first will discuss the design issues of the mpiPython API, associated with its development. In the second part of the paper, we will discuss node/parallel performance to compare mpiPython to other MPI bindings on a Linux cluster and can expect mpiPython achieves quite acceptable performance.","PeriodicalId":445000,"journal":{"name":"2020 3rd International Conference on Information and Computer Technologies (ICICT)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Information and Computer Technologies (ICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICT50521.2020.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For the last two decades, Python has become one of the most popular programming languages and been used to develop and analyze data-intensive scientific and engineering applications and in the areas such as Bigdata Analytics, Social Media, Data Science, Physics, Psychology, Healthcare, Political Science, etc. Moreover, demand of supporting Python data-parallel applications for those areas is rapidly growing. There have been international efforts to produce a message passing interface for Python bindings to support parallel computing, but specific challenges still remain to improve Python bindings. The main purpose of this paper is to introduce our MPI Python binding, called mpiPython, with the MPI standard communication API. In this paper, we first will discuss the design issues of the mpiPython API, associated with its development. In the second part of the paper, we will discuss node/parallel performance to compare mpiPython to other MPI bindings on a Linux cluster and can expect mpiPython achieves quite acceptable performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
mpiPython:一个健壮的Python MPI绑定
在过去的二十年里,Python已经成为最流行的编程语言之一,并被用于开发和分析数据密集型科学和工程应用程序,以及大数据分析、社交媒体、数据科学、物理学、心理学、医疗保健、政治学等领域。此外,这些领域对支持Python数据并行应用程序的需求正在迅速增长。国际上一直在努力为Python绑定生成一个消息传递接口来支持并行计算,但是在改进Python绑定方面仍然存在一些具体的挑战。本文的主要目的是介绍我们的MPI Python绑定(称为mpiPython)与MPI标准通信API。在本文中,我们将首先讨论与开发相关的mpiPython API的设计问题。在本文的第二部分,我们将讨论节点/并行性能,将mpiPython与Linux集群上的其他MPI绑定进行比较,并期望mpiPython获得相当可接受的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Significance of Agile Software Development and SQA Powered by Automation Improved Generalizability of Deep-Fakes Detection using Transfer Learning Based CNN Framework A New Homomorphic Message Authentication Code Scheme for Network Coding Conspiracy and Rumor Correction: Analysis of Social Media Users' Comments A Novel System for Ammonia Gas Control in Broiler Production Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1