Combined Forecasting Model of Traffic Flow Based on DGM(1,1) and GRNN

Zhiheng Yu, Kecheng Liu, Chengli Zhao, Y. Liu
{"title":"Combined Forecasting Model of Traffic Flow Based on DGM(1,1) and GRNN","authors":"Zhiheng Yu, Kecheng Liu, Chengli Zhao, Y. Liu","doi":"10.1109/CIIS.2017.17","DOIUrl":null,"url":null,"abstract":"In order to improve the prediction accuracy of traffic flow, this paper proposes a combined forecasting models with residual correction based on DGM(1,1). After introducing the modeling steps of DGM(1,1), DGM-GRNN combination model is established. In the model, the GRNN is used to predict the residual of DGM(1,1) model. Finally, we sum up the predict result of DGM(1,1) model and the residual correction model, and get the final prediction result of the combined forecasting model. We predicted the traffic flow of shangsan expressway by the model in this paper and then compared the results with the experimental results of DGM(1,1). The validity and feasibility of the proposed method are verified.","PeriodicalId":254342,"journal":{"name":"2017 International Conference on Computing Intelligence and Information System (CIIS)","volume":"332 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing Intelligence and Information System (CIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIIS.2017.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to improve the prediction accuracy of traffic flow, this paper proposes a combined forecasting models with residual correction based on DGM(1,1). After introducing the modeling steps of DGM(1,1), DGM-GRNN combination model is established. In the model, the GRNN is used to predict the residual of DGM(1,1) model. Finally, we sum up the predict result of DGM(1,1) model and the residual correction model, and get the final prediction result of the combined forecasting model. We predicted the traffic flow of shangsan expressway by the model in this paper and then compared the results with the experimental results of DGM(1,1). The validity and feasibility of the proposed method are verified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于DGM(1,1)和GRNN的交通流联合预测模型
为了提高交通流的预测精度,本文提出了一种基于DGM(1,1)的残差校正组合预测模型。在引入DGM(1,1)的建模步骤后,建立了DGM- grnn组合模型。在模型中,使用GRNN来预测DGM(1,1)模型的残差。最后,对DGM(1,1)模型和残差修正模型的预测结果进行汇总,得到组合预测模型的最终预测结果。本文利用该模型对上三高速公路交通流进行了预测,并与DGM(1,1)的实验结果进行了比较。验证了该方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network Traffic Anomaly Detection Based on Dynamic Programming Study on the Robustness Based on PID Fuzzy Controller The Best Performance Evaluation of Encryption Algorithms to Reduce Power Consumption in WSN Non-redundant Distributed Database Allocation Technology Research Research and Implementation Based on Three-Dimensional Model Watermarking Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1