Adapting Noise Filters for Ranking

Ana Carolina Lorena, L. P. F. Garcia, A. Carvalho
{"title":"Adapting Noise Filters for Ranking","authors":"Ana Carolina Lorena, L. P. F. Garcia, A. Carvalho","doi":"10.1109/BRACIS.2015.58","DOIUrl":null,"url":null,"abstract":"Noise filtering can be considered an important pre-processing step in the data mining process, making data more reliable for pattern extraction. An interesting aspect for increasing data understanding would be to rank the potential noisy cases, in order to evidence the most unreliable instances to be further examined. Since the majority of the filters from the literature were designed only for hard classification, distinguishing whether an example is noisy or not, in this paper we adapt the output of some state of the art noise filters for ranking the cases identified as suspicious. We also present new evaluation measures for the noise rankers designed, which take into account the ordering of the detected noisy cases.","PeriodicalId":416771,"journal":{"name":"2015 Brazilian Conference on Intelligent Systems (BRACIS)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2015.58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Noise filtering can be considered an important pre-processing step in the data mining process, making data more reliable for pattern extraction. An interesting aspect for increasing data understanding would be to rank the potential noisy cases, in order to evidence the most unreliable instances to be further examined. Since the majority of the filters from the literature were designed only for hard classification, distinguishing whether an example is noisy or not, in this paper we adapt the output of some state of the art noise filters for ranking the cases identified as suspicious. We also present new evaluation measures for the noise rankers designed, which take into account the ordering of the detected noisy cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
适应噪声滤波器的排名
噪声滤波可以被认为是数据挖掘过程中一个重要的预处理步骤,使数据更可靠地用于模式提取。增加数据理解的一个有趣的方面是对潜在的噪声情况进行排序,以便证明最不可靠的实例进行进一步检查。由于文献中的大多数滤波器仅设计用于硬分类,即区分示例是否有噪声,因此在本文中,我们采用一些最先进的噪声滤波器的输出来对确定为可疑的情况进行排序。我们还对设计的噪声排序器提出了新的评价方法,该方法考虑了检测到的噪声情况的排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Hyper-Heuristic for the Environmental/Economic Dispatch Optimization Problem Evaluating Methods for Constant Optimization of Symbolic Regression Benchmark Problems A Set-Medoids Vector Batch SOM Algorithm Based on Multiple Dissimilarity Matrices Desire: A Dynamic Approach for Exploratory Search Results Recommendation Dyna-MLAC: Trading Computational and Sample Complexities in Actor-Critic Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1