{"title":"Modular functors, cohomological field\n theories, and topological recursion","authors":"J. Andersen, G. Borot, N. Orantin","doi":"10.1090/PSPUM/100/01772","DOIUrl":null,"url":null,"abstract":"Given a topological modular functor $\\mathcal{V}$ in the sense of Walker \\cite{Walker}, we construct vector bundles over $\\bar{\\mathcal{M}}_{g,n}$, whose Chern classes define semi-simple cohomological field theories. This construction depends on a determination of the logarithm of the eigenvalues of the Dehn twist and central element actions. We show that the intersection of the Chern class with the $\\psi$-classes in $\\bar{\\mathcal{M}}_{g,n}$ is computed by the topological recursion of \\cite{EOFg}, for a local spectral curve that we describe. In particular, we show how the Verlinde formula for the dimensions $D_{\\vec{\\lambda}}(\\mathbf{\\Sigma}_{g,n}) = \\dim \\mathcal{V}_{\\vec{\\lambda}}(\\mathbf{\\Sigma}_{g,n})$ is retrieved from the topological recursion. We analyze the consequences of our result on two examples: modular functors associated to a finite group $G$ (for which $D_{\\vec{\\lambda}}(\\mathbf{\\Sigma}_{g,n})$ enumerates certain $G$-principle bundles over a genus $g$ surface with $n$ boundary conditions specified by $\\vec{\\lambda}$), and the modular functor obtained from Wess-Zumino-Witten conformal field theory associated to a simple, simply-connected Lie group $G$ (for which $\\mathcal{V}_{\\vec{\\lambda}}(\\mathbf{\\Sigma}_{g,n})$ is the Verlinde bundle).","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/100/01772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Given a topological modular functor $\mathcal{V}$ in the sense of Walker \cite{Walker}, we construct vector bundles over $\bar{\mathcal{M}}_{g,n}$, whose Chern classes define semi-simple cohomological field theories. This construction depends on a determination of the logarithm of the eigenvalues of the Dehn twist and central element actions. We show that the intersection of the Chern class with the $\psi$-classes in $\bar{\mathcal{M}}_{g,n}$ is computed by the topological recursion of \cite{EOFg}, for a local spectral curve that we describe. In particular, we show how the Verlinde formula for the dimensions $D_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n}) = \dim \mathcal{V}_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n})$ is retrieved from the topological recursion. We analyze the consequences of our result on two examples: modular functors associated to a finite group $G$ (for which $D_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n})$ enumerates certain $G$-principle bundles over a genus $g$ surface with $n$ boundary conditions specified by $\vec{\lambda}$), and the modular functor obtained from Wess-Zumino-Witten conformal field theory associated to a simple, simply-connected Lie group $G$ (for which $\mathcal{V}_{\vec{\lambda}}(\mathbf{\Sigma}_{g,n})$ is the Verlinde bundle).