Statistical Tests of Type I Error

C. Auerbach
{"title":"Statistical Tests of Type I Error","authors":"C. Auerbach","doi":"10.1093/oso/9780197582756.003.0006","DOIUrl":null,"url":null,"abstract":"This chapter covers tests of statistical significance that can be used to compare data across phases. These are used to determine whether observed outcomes are likely the result of an intervention or, more likely, the result of sampling error or chance. The purpose of a statistical test is to determine how likely it is that the analyst is making an incorrect decision by rejecting the null hypothesis, that there is no difference between compared phases, and accepting the alternative one, that true differences exist. A number of tests of significance are presented in this chapter: statistical process control charts (SPCs), proportion/frequency, chi-square, the conservative dual criteria (CDC), robust conservative dual criteria (RCDC), the t test, and analysis of variance (ANOVA). How and when to use each of these are also discussed, and examples are provided to illustrate each. The method for transforming autocorrelated data and merging data sets is discussed further in the context of utilizing transformed data sets to test of Type 1 error.","PeriodicalId":197276,"journal":{"name":"SSD for R","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SSD for R","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780197582756.003.0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter covers tests of statistical significance that can be used to compare data across phases. These are used to determine whether observed outcomes are likely the result of an intervention or, more likely, the result of sampling error or chance. The purpose of a statistical test is to determine how likely it is that the analyst is making an incorrect decision by rejecting the null hypothesis, that there is no difference between compared phases, and accepting the alternative one, that true differences exist. A number of tests of significance are presented in this chapter: statistical process control charts (SPCs), proportion/frequency, chi-square, the conservative dual criteria (CDC), robust conservative dual criteria (RCDC), the t test, and analysis of variance (ANOVA). How and when to use each of these are also discussed, and examples are provided to illustrate each. The method for transforming autocorrelated data and merging data sets is discussed further in the context of utilizing transformed data sets to test of Type 1 error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
类型I错误的统计测试
本章涵盖了统计显著性检验,可以用来比较不同阶段的数据。这些是用来确定观察到的结果是否可能是干预的结果,或者更可能是抽样误差或偶然的结果。统计检验的目的是确定分析师通过拒绝零假设做出错误决策的可能性有多大,即在比较阶段之间没有差异,并接受替代假设,即真正的差异存在。本章介绍了一些显著性检验:统计过程控制图(spc)、比例/频率、卡方、保守双重标准(CDC)、稳健保守双重标准(RCDC)、t检验和方差分析(ANOVA)。还讨论了如何以及何时使用这些工具,并提供了示例来说明每种工具。在利用转换后的数据集检验第一类误差的背景下,进一步讨论了自相关数据的转换和数据集合并的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparing Baseline and Intervention Phases Overview of SSDforR Functions Meta-Analysis in Single-Subject Evaluation Research Using RMarkdown to Present Your Findings Analyzing Baseline Phase Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1