L21-iPaD: An efficient method for drug-pathway association pairs inference

Dong-Qin Wang, C. Zheng, Ying-Lian Gao, Jin-Xing Liu, Sha-Sha Wu, J. Shang
{"title":"L21-iPaD: An efficient method for drug-pathway association pairs inference","authors":"Dong-Qin Wang, C. Zheng, Ying-Lian Gao, Jin-Xing Liu, Sha-Sha Wu, J. Shang","doi":"10.1109/BIBM.2016.7822597","DOIUrl":null,"url":null,"abstract":"Pathway-based drug discovery overcomes the disadvantages of the “one drug-one target” method, which aims to find the effective drugs to act on single targets. The current method “iPaD” identities the drug-pathway association pairs by taking the lasso-type penalty on the drug-pathway association matrix. In order to enhance the robustness of the methods and be more effective to find the novel drug-pathway association pairs, we introduce a new method named “L2,1-iPaD”. Compared with the iPaD method, we impose the L2,1-norm constraint on the drug-pathway association coefficient matrix. By applying our method to a real widely datasets (CCLE dataset), we demonstrate that our method is superior to the iPaD method. And our method can obtain the smaller P-values than the iPaD method by performing permutation test to assess the significance of the identified drug-pathway association pairs. More importantly, compared with the iPaD method, our method can identify larger numbers of validated drug-pathway association pairs. The experimental results on the real dataset demonstrate the effectiveness of our method.","PeriodicalId":345384,"journal":{"name":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2016.7822597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Pathway-based drug discovery overcomes the disadvantages of the “one drug-one target” method, which aims to find the effective drugs to act on single targets. The current method “iPaD” identities the drug-pathway association pairs by taking the lasso-type penalty on the drug-pathway association matrix. In order to enhance the robustness of the methods and be more effective to find the novel drug-pathway association pairs, we introduce a new method named “L2,1-iPaD”. Compared with the iPaD method, we impose the L2,1-norm constraint on the drug-pathway association coefficient matrix. By applying our method to a real widely datasets (CCLE dataset), we demonstrate that our method is superior to the iPaD method. And our method can obtain the smaller P-values than the iPaD method by performing permutation test to assess the significance of the identified drug-pathway association pairs. More importantly, compared with the iPaD method, our method can identify larger numbers of validated drug-pathway association pairs. The experimental results on the real dataset demonstrate the effectiveness of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种有效的药物通路关联对推断方法
基于途径的药物发现克服了“一药一靶点”方法的缺点,这种方法旨在寻找作用于单一靶点的有效药物。目前的方法“iPaD”通过对药物通路关联矩阵进行套索惩罚来识别药物通路关联对。为了提高方法的鲁棒性,更有效地发现新的药物通路关联对,我们引入了一种新的方法“L2,1-iPaD”。与iPaD方法相比,我们对药物通路关联系数矩阵施加了L2,1范数约束。通过将我们的方法应用于真实的广泛数据集(CCLE数据集),我们证明了我们的方法优于iPaD方法。通过置换检验,我们的方法可以获得比iPaD方法更小的p值,以评估鉴定出的药物通路关联对的意义。更重要的是,与iPaD方法相比,我们的方法可以识别更多的经过验证的药物通路关联对。在真实数据集上的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The role of high performance, grid and cloud computing in high-throughput sequencing A novel algorithm for identifying essential proteins by integrating subcellular localization CNNsite: Prediction of DNA-binding residues in proteins using Convolutional Neural Network with sequence features Inferring Social Influence of anti-Tobacco mass media campaigns Emotion recognition from multi-channel EEG data through Convolutional Recurrent Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1