Yanshuai Wang, Z. Duan, Xiang Huang, Xinwu Ma, Xianfeng Tang, Zhanliang Wang, Jinjun Feng, Y. Gong
{"title":"Metamaterial-based high-power microwave radiation sources","authors":"Yanshuai Wang, Z. Duan, Xiang Huang, Xinwu Ma, Xianfeng Tang, Zhanliang Wang, Jinjun Feng, Y. Gong","doi":"10.1109/IVEC.2015.7223957","DOIUrl":null,"url":null,"abstract":"We propose a metamaterial slow-wave structure (SWS) which is composed of a circular waveguide periodically loaded with complementary electric split ring resonators (CeSRRs). The high-frequency characteristics of the metamaterial SWS have been studied, and the simulation results reveal that it is a kind of SWS of higher interaction impedance. An S-band metamaterial microwave radiation source is calculated by particle-in-cell (PIC) simulation, the results show that it is a potential high-power microwave radiation source.","PeriodicalId":435469,"journal":{"name":"2015 IEEE International Vacuum Electronics Conference (IVEC)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Vacuum Electronics Conference (IVEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVEC.2015.7223957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We propose a metamaterial slow-wave structure (SWS) which is composed of a circular waveguide periodically loaded with complementary electric split ring resonators (CeSRRs). The high-frequency characteristics of the metamaterial SWS have been studied, and the simulation results reveal that it is a kind of SWS of higher interaction impedance. An S-band metamaterial microwave radiation source is calculated by particle-in-cell (PIC) simulation, the results show that it is a potential high-power microwave radiation source.