{"title":"Investigation of the heat handling capabilities of DIII-D neutral beamline internal components","authors":"J. Phillips, C. Baxi, R. Hong","doi":"10.1109/FUSION.1993.518365","DOIUrl":null,"url":null,"abstract":"The current DIII-D neutral beam system is a nominal five second pulse length upgrade of a previous design rated for only 500 msec operation. While the ion sources are rated for 60 sec operation, in practice pulse lengths are limited both by the beamline internal components ability to handle the fraction of the power which is scraped off, and by the power supplies ability to provide pulse lengths of greater than 5 sec. This paper examines the capability of the existing DIII-D neutral beamline heat removing components both in terms of present and desired operating parameters. To date, at 2.5 MW per ion source, pulses are limited to 3.5 sec by beamline internal components, while at lower ratings of 2.0 MW per ion source, up to 5 sec pulses have been achieved, Recent advances and demonstration of the extraction of 3.5 MW per DIII-D ion source give an even wider window of operating conditions. A full series of beamline thermocouple data has been collected to determine the heat loading and implied surface temperatures for the various DIII-D neutral beamline internal components. These data will be presented along with an analysis of the needs for specific component upgrades, given a desire for 10 sec operation.","PeriodicalId":365814,"journal":{"name":"15th IEEE/NPSS Symposium. Fusion Engineering","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th IEEE/NPSS Symposium. Fusion Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUSION.1993.518365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The current DIII-D neutral beam system is a nominal five second pulse length upgrade of a previous design rated for only 500 msec operation. While the ion sources are rated for 60 sec operation, in practice pulse lengths are limited both by the beamline internal components ability to handle the fraction of the power which is scraped off, and by the power supplies ability to provide pulse lengths of greater than 5 sec. This paper examines the capability of the existing DIII-D neutral beamline heat removing components both in terms of present and desired operating parameters. To date, at 2.5 MW per ion source, pulses are limited to 3.5 sec by beamline internal components, while at lower ratings of 2.0 MW per ion source, up to 5 sec pulses have been achieved, Recent advances and demonstration of the extraction of 3.5 MW per DIII-D ion source give an even wider window of operating conditions. A full series of beamline thermocouple data has been collected to determine the heat loading and implied surface temperatures for the various DIII-D neutral beamline internal components. These data will be presented along with an analysis of the needs for specific component upgrades, given a desire for 10 sec operation.