Resource Usage Prediction Based on BILSTM-GRU Combination Model

Xueting Li, Hongliang Wang, Pengfei Xiu, Xingyu Zhou, Fanhua Meng
{"title":"Resource Usage Prediction Based on BILSTM-GRU Combination Model","authors":"Xueting Li, Hongliang Wang, Pengfei Xiu, Xingyu Zhou, Fanhua Meng","doi":"10.1109/JCC56315.2022.00009","DOIUrl":null,"url":null,"abstract":"With the rapid development of cloud computing, accurate resource usage prediction has become a key technology for the efficient utilization of cloud data center resources. Aiming at the problems of low prediction accuracy and long prediction time of the current load prediction model, a combined prediction model BILSTM-GRU based on bidirectional long short-term memory network (BILSTM) and gated recurrent unit (GRU) is proposed, which effectively combines BILSTM network with high prediction accuracy and short prediction time of the GRU network. It is compared and verified with various classical time series prediction algorithms on the Google cloud computing data set. Experimental results show that the mean square error (MSE) of BILSTM-GRU combined prediction model is reduced by about 5, and the prediction time is shortened by about 5% compared with the existing combined prediction model. The experimental results verify that BILSTM-GRU combined model has higher prediction accuracy and shorter prediction time, which provides an important scientific basis for automatic expansion and shrinkage of cloud computing containers using the prediction results of resource usage.","PeriodicalId":239996,"journal":{"name":"2022 IEEE International Conference on Joint Cloud Computing (JCC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Joint Cloud Computing (JCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCC56315.2022.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the rapid development of cloud computing, accurate resource usage prediction has become a key technology for the efficient utilization of cloud data center resources. Aiming at the problems of low prediction accuracy and long prediction time of the current load prediction model, a combined prediction model BILSTM-GRU based on bidirectional long short-term memory network (BILSTM) and gated recurrent unit (GRU) is proposed, which effectively combines BILSTM network with high prediction accuracy and short prediction time of the GRU network. It is compared and verified with various classical time series prediction algorithms on the Google cloud computing data set. Experimental results show that the mean square error (MSE) of BILSTM-GRU combined prediction model is reduced by about 5, and the prediction time is shortened by about 5% compared with the existing combined prediction model. The experimental results verify that BILSTM-GRU combined model has higher prediction accuracy and shorter prediction time, which provides an important scientific basis for automatic expansion and shrinkage of cloud computing containers using the prediction results of resource usage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BILSTM-GRU组合模型的资源利用预测
随着云计算的快速发展,准确的资源使用预测已经成为高效利用云数据中心资源的关键技术。针对当前负荷预测模型预测精度低、预测时间长的问题,提出了一种基于双向长短期记忆网络(BILSTM)和门控循环单元(GRU)的组合预测模型BILSTM-GRU,将BILSTM网络与GRU网络预测精度高、预测时间短的特点有效地结合起来。并在Google云计算数据集上与各种经典时间序列预测算法进行了比较和验证。实验结果表明,与现有组合预测模型相比,BILSTM-GRU组合预测模型的均方误差(MSE)降低了约5,预测时间缩短了约5%。实验结果验证了BILSTM-GRU组合模型具有较高的预测精度和较短的预测时间,为利用资源使用预测结果实现云计算容器的自动伸缩提供了重要的科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two-stage Scheduling of Stream Computing for Industrial Cloud-edge Collaboration Threshold Based Load Balancing Algorithm in Cloud Computing Improving scalability of multi-agent reinforcement learning with parameters sharing MicroStream: A Distributed In-memory Caching Service For Data Production Towards A Secure Joint Cloud With Confidential Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1