Clustering web search results using Wikipedia resource

Chung-Nguyen Tran, A. Ameljanczyk
{"title":"Clustering web search results using Wikipedia resource","authors":"Chung-Nguyen Tran, A. Ameljanczyk","doi":"10.5604/01.3001.0014.4437","DOIUrl":null,"url":null,"abstract":"The paper presents a proposal of a new method for clustering search results. The method uses an external knowledge resource, which can be, for example, Wikipedia. Wikipedia – the largest encyclopedia, is a free and popular knowledge resource which is used to extract topics from short texts. Similarities between documents are calculated based on the similarities between these topics. After that, affinity propagation clustering algorithm is employed to cluster web search results. Proposed method is tested by AMBIENT dataset and evaluated within the experimental framework provided by a SemEval-2013 task. The paper also suggests new method to compare global performance of algorithms using multi – criteria analysis.\n\n","PeriodicalId":240434,"journal":{"name":"Computer Science and Mathematical Modelling","volume":"191 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science and Mathematical Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5604/01.3001.0014.4437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper presents a proposal of a new method for clustering search results. The method uses an external knowledge resource, which can be, for example, Wikipedia. Wikipedia – the largest encyclopedia, is a free and popular knowledge resource which is used to extract topics from short texts. Similarities between documents are calculated based on the similarities between these topics. After that, affinity propagation clustering algorithm is employed to cluster web search results. Proposed method is tested by AMBIENT dataset and evaluated within the experimental framework provided by a SemEval-2013 task. The paper also suggests new method to compare global performance of algorithms using multi – criteria analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用维基百科资源聚类网络搜索结果
本文提出了一种新的搜索结果聚类方法。该方法使用外部知识资源,例如维基百科。维基百科-最大的百科全书,是一个免费和流行的知识资源,用于从短文本中提取主题。文档之间的相似度是基于这些主题之间的相似度来计算的。然后,采用亲和传播聚类算法对web搜索结果进行聚类。提出的方法通过AMBIENT数据集进行测试,并在SemEval-2013任务提供的实验框架内进行评估。本文还提出了一种利用多准则分析比较算法全局性能的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image caption generation using transfer learning Overview of selected reinforcement learning solutions to several game theory problems When AI Fails to See: The Challenge of Adversarial Patches Fuzzy sets in modeling patient’s disease states in medical diagnostics support algorithms Analysis of selected reinforcement learning applications in contract bridge
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1