Effects of Spectral Radius on Echo-State-Network's Training

Yuanbiao Wang, J. Ni, Zhiping Xu
{"title":"Effects of Spectral Radius on Echo-State-Network's Training","authors":"Yuanbiao Wang, J. Ni, Zhiping Xu","doi":"10.1109/ICICSE.2009.69","DOIUrl":null,"url":null,"abstract":"The echo-state-network approach for training recurrent neural networks can yield good results. However, the results depend on the experience of neural network design. It usually requires multiple tests and random chances. Through our study of the effects of spectral radius of the internal weight matrix on the training results, we propose to develop a method that can improve the echo-state network training by introducing a dynamic spectral radius. Our experiments verify that our new algorithm is significantly better than the original method for the training results and it is stable.","PeriodicalId":193621,"journal":{"name":"2009 Fourth International Conference on Internet Computing for Science and Engineering","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Fourth International Conference on Internet Computing for Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICSE.2009.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The echo-state-network approach for training recurrent neural networks can yield good results. However, the results depend on the experience of neural network design. It usually requires multiple tests and random chances. Through our study of the effects of spectral radius of the internal weight matrix on the training results, we propose to develop a method that can improve the echo-state network training by introducing a dynamic spectral radius. Our experiments verify that our new algorithm is significantly better than the original method for the training results and it is stable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
谱半径对回波状态网络训练的影响
用回声状态网络方法训练递归神经网络具有良好的效果。然而,结果依赖于神经网络设计的经验。它通常需要多次测试和随机的机会。通过研究内部权矩阵谱半径对训练结果的影响,我们提出了一种通过引入动态谱半径来改进回波状态网络训练的方法。实验结果表明,新算法的训练效果明显优于原方法,且稳定性好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low Power Behavioral Synthesis The Improvement of XML Filtering Based on DFA Face Recognition Based on Modified Modular Principal Component Analysis Topology Awareness on Network Damage Assessment and Control Strategies Generation Ontology Security Strategy of Security Data Integrity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1