Infomaxformer: Maximum Entropy Transformer for Long Time-Series Forecasting Problem

Peiwang Tang, Xianchao Zhang
{"title":"Infomaxformer: Maximum Entropy Transformer for Long Time-Series Forecasting Problem","authors":"Peiwang Tang, Xianchao Zhang","doi":"10.48550/arXiv.2301.01772","DOIUrl":null,"url":null,"abstract":"The Transformer architecture yields state-of-the-art results in many tasks such as natural language processing (NLP) and computer vision (CV), since the ability to efficiently capture the precise long-range dependency coupling between input sequences. With this advanced capability, however, the quadratic time complexity and high memory usage prevents the Transformer from dealing with long time-series forecasting problem (LTFP). To address these difficulties: (i) we revisit the learned attention patterns of the vanilla self-attention, redesigned the calculation method of self-attention based the Maximum Entropy Principle. (ii) we propose a new method to sparse the self-attention, which can prevent the loss of more important self-attention scores due to random sampling.(iii) We propose Keys/Values Distilling method motivated that a large amount of feature in the original self-attention map is redundant, which can further reduce the time and spatial complexity and make it possible to input longer time-series. Finally, we propose a method that combines the encoder-decoder architecture with seasonal-trend decomposition, i.e., using the encoder-decoder architecture to capture more specific seasonal parts. A large number of experiments on several large-scale datasets show that our Infomaxformer is obviously superior to the existing methods. We expect this to open up a new solution for Transformer to solve LTFP, and exploring the ability of the Transformer architecture to capture much longer temporal dependencies.","PeriodicalId":326727,"journal":{"name":"Adaptive Agents and Multi-Agent Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adaptive Agents and Multi-Agent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.01772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The Transformer architecture yields state-of-the-art results in many tasks such as natural language processing (NLP) and computer vision (CV), since the ability to efficiently capture the precise long-range dependency coupling between input sequences. With this advanced capability, however, the quadratic time complexity and high memory usage prevents the Transformer from dealing with long time-series forecasting problem (LTFP). To address these difficulties: (i) we revisit the learned attention patterns of the vanilla self-attention, redesigned the calculation method of self-attention based the Maximum Entropy Principle. (ii) we propose a new method to sparse the self-attention, which can prevent the loss of more important self-attention scores due to random sampling.(iii) We propose Keys/Values Distilling method motivated that a large amount of feature in the original self-attention map is redundant, which can further reduce the time and spatial complexity and make it possible to input longer time-series. Finally, we propose a method that combines the encoder-decoder architecture with seasonal-trend decomposition, i.e., using the encoder-decoder architecture to capture more specific seasonal parts. A large number of experiments on several large-scale datasets show that our Infomaxformer is obviously superior to the existing methods. We expect this to open up a new solution for Transformer to solve LTFP, and exploring the ability of the Transformer architecture to capture much longer temporal dependencies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长时间序列预测问题的最大熵变压器
Transformer体系结构在许多任务中产生最先进的结果,例如自然语言处理(NLP)和计算机视觉(CV),因为它能够有效地捕获输入序列之间精确的远程依赖耦合。然而,使用这种高级功能,二次元时间复杂度和高内存使用会阻止Transformer处理长时间序列预测问题(LTFP)。为了解决这些困难:(i)我们重新审视了香草自注意的学习注意模式,重新设计了基于最大熵原理的自注意计算方法。(ii)提出了一种新的自注意稀疏方法,可以防止由于随机采样而丢失更重要的自注意分数。(iii)我们提出了key /Values Distilling方法,这是基于原始自注意图中大量的特征是冗余的,可以进一步降低时间和空间复杂度,使输入更长的时间序列成为可能。最后,我们提出了一种将编码器-解码器架构与季节趋势分解相结合的方法,即使用编码器-解码器架构来捕获更具体的季节部分。在多个大规模数据集上的大量实验表明,我们的Infomaxformer明显优于现有的方法。我们期望这将为Transformer打开一个解决LTFP的新解决方案,并探索Transformer体系结构捕获更长的时间依赖性的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovering Consistent Subelections Strategic Cost Selection in Participatory Budgeting Minimizing State Exploration While Searching Graphs with Unknown Obstacles vMFER: von Mises-Fisher Experience Resampling Based on Uncertainty of Gradient Directions for Policy Improvement of Actor-Critic Algorithms Reinforcement Nash Equilibrium Solver
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1