Modified Local Ternary Pattern Based Face Recognition Using SVM

Pattarakamon Rangsee, K. Raja, V. R.
{"title":"Modified Local Ternary Pattern Based Face Recognition Using SVM","authors":"Pattarakamon Rangsee, K. Raja, V. R.","doi":"10.1109/ICIIBMS.2018.8549952","DOIUrl":null,"url":null,"abstract":"Face recognition (FR) has drawn considerable interest and attention in the area of pattern recognition. FR is still a challenging task in real time applications even though they are a number of face recognition algorithms which are available and work in various constrained environment. The paper proposes a FR algorithm using Modified Local Ternary Pattern (MLTP) with multi class Support Vector Machine (SVM) classifier. The MLTP features of the face images are classified by an Error-Correcting Output Code (ECOC) multiclass model with SVM. The proposed method is tested on six standard face databases. The experimental results have been demonstrated that the performance of MLTP with SVM can achieve higher recognition accuracy compared to the conventional methods.","PeriodicalId":430326,"journal":{"name":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2018.8549952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Face recognition (FR) has drawn considerable interest and attention in the area of pattern recognition. FR is still a challenging task in real time applications even though they are a number of face recognition algorithms which are available and work in various constrained environment. The paper proposes a FR algorithm using Modified Local Ternary Pattern (MLTP) with multi class Support Vector Machine (SVM) classifier. The MLTP features of the face images are classified by an Error-Correcting Output Code (ECOC) multiclass model with SVM. The proposed method is tested on six standard face databases. The experimental results have been demonstrated that the performance of MLTP with SVM can achieve higher recognition accuracy compared to the conventional methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的改进局部三元模式人脸识别
人脸识别在模式识别领域引起了极大的兴趣和关注。在实时应用中,人脸识别仍然是一项具有挑战性的任务,尽管有许多可用的人脸识别算法可以在各种约束环境中工作。提出了一种基于改进局部三元模式(MLTP)和多类支持向量机(SVM)分类器的FR算法。基于支持向量机的ECOC (Error-Correcting Output Code)多类模型对人脸图像的MLTP特征进行分类。在6个标准人脸数据库上对该方法进行了测试。实验结果表明,与传统方法相比,基于支持向量机的MLTP可以达到更高的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuronal Dynamic Framework of Cerebral Cortical Networks for Spontaneous Behaviors User Experience Evaluation on the Cryptocurrency Website by Trust Aspect Energy and Cost Efficient Navigation Technique for the Visually Impaired Transforming Auto-Encoder and Decoder Network for Pediatric Bone Image Segmentation using a State-of-the-art Semantic Segmentation network on Bone Radiographs Observer design of high throughput screening system based on dioid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1