Minutia-based enhancement of fingerprint samples

Patrick Schuch, Simon-Daniel Schulz, C. Busch
{"title":"Minutia-based enhancement of fingerprint samples","authors":"Patrick Schuch, Simon-Daniel Schulz, C. Busch","doi":"10.1109/CCST.2017.8167824","DOIUrl":null,"url":null,"abstract":"Image enhancement is a common pre-processing step before the extraction of biometric features from a fingerprint sample. This can be essential especially for images of low image quality. An ideal fingerprint image enhancement should intend to improve the end-to-end biometric performance, i.e. the performance achieved on biometric features extracted from enhanced fingerprint samples. We use a model from Deep Learning for the task of image enhancement. This work's main contribution is a dedicated cost function which is optimized during training The cost function takes into account the biometric feature extraction. Our approach intends to improve the accuracy and reliability of the biometric feature extraction process: No feature should be missed and all features should be extracted as precise as possible. By doing so, the loss function forced the image enhancement to learn how to improve the suitability of a fingerprint sample for a biometric comparison process. The effectivity of the cost function was demonstrated for two different biometric feature extraction algorithms.","PeriodicalId":371622,"journal":{"name":"2017 International Carnahan Conference on Security Technology (ICCST)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Carnahan Conference on Security Technology (ICCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.2017.8167824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Image enhancement is a common pre-processing step before the extraction of biometric features from a fingerprint sample. This can be essential especially for images of low image quality. An ideal fingerprint image enhancement should intend to improve the end-to-end biometric performance, i.e. the performance achieved on biometric features extracted from enhanced fingerprint samples. We use a model from Deep Learning for the task of image enhancement. This work's main contribution is a dedicated cost function which is optimized during training The cost function takes into account the biometric feature extraction. Our approach intends to improve the accuracy and reliability of the biometric feature extraction process: No feature should be missed and all features should be extracted as precise as possible. By doing so, the loss function forced the image enhancement to learn how to improve the suitability of a fingerprint sample for a biometric comparison process. The effectivity of the cost function was demonstrated for two different biometric feature extraction algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于细节的指纹样本增强
图像增强是从指纹样本中提取生物特征之前常见的预处理步骤。这对于图像质量较低的图像尤其重要。理想的指纹图像增强应该旨在提高端到端的生物特征性能,即从增强的指纹样本中提取的生物特征所取得的性能。我们使用深度学习的模型来完成图像增强的任务。本工作的主要贡献是在训练过程中优化了一个专用的代价函数,该代价函数考虑了生物特征的提取。我们的方法旨在提高生物特征提取过程的准确性和可靠性:不应遗漏任何特征,并尽可能精确地提取所有特征。通过这样做,损失函数迫使图像增强学习如何提高指纹样本对生物特征比较过程的适用性。在两种不同的生物特征提取算法中验证了代价函数的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Competence measure in social networks Stability of a dynamic biometric signature created on various devices Real-time behavioral DGA detection through machine learning Cyber-physical risk management for PV photovoltaic plants Encrypted computing: Speed, security and provable obfuscation against insiders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1