Improvement of a neural-fuzzy motion detection vision model for complex scenario conditions

M. Murguia, Graciela Ramírez Alonso, Sergio Gonzalez-Duarte
{"title":"Improvement of a neural-fuzzy motion detection vision model for complex scenario conditions","authors":"M. Murguia, Graciela Ramírez Alonso, Sergio Gonzalez-Duarte","doi":"10.1109/IJCNN.2013.6706734","DOIUrl":null,"url":null,"abstract":"Motion detection represents a challenging issue in artificial vision systems. Besides detection of movement in normal scenario conditions robust systems must deal with other non-normal conditions. We propose the improvement of a former neuro-fuzzy motion detection method to face drastic illumination changes, gradual illumination conditions, moving background and scene composition changes. The improvements include adaptive learning rates as well as the inclusion of new fuzzy rules. Experimental findings over several video sequences verify that the improvements outperform the performance of the original method in the non-normal conditions without affecting the performance under normal conditions.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Motion detection represents a challenging issue in artificial vision systems. Besides detection of movement in normal scenario conditions robust systems must deal with other non-normal conditions. We propose the improvement of a former neuro-fuzzy motion detection method to face drastic illumination changes, gradual illumination conditions, moving background and scene composition changes. The improvements include adaptive learning rates as well as the inclusion of new fuzzy rules. Experimental findings over several video sequences verify that the improvements outperform the performance of the original method in the non-normal conditions without affecting the performance under normal conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
复杂场景条件下神经模糊运动检测视觉模型的改进
运动检测是人工视觉系统中一个具有挑战性的问题。除了在正常情况下检测运动外,鲁棒系统还必须处理其他非正常情况。针对光照剧烈变化、光照条件渐变、背景运动和场景构图变化等问题,提出了一种改进的神经模糊运动检测方法。改进包括自适应学习率以及包含新的模糊规则。在多个视频序列上的实验结果验证了改进后的算法在不影响正常情况下的性能的情况下,在非正常情况下的性能优于原方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An SVM-based approach for stock market trend prediction Spiking neural networks for financial data prediction Improving multi-label classification performance by label constraints Biologically inspired intensity and range image feature extraction A location-independent direct link neuromorphic interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1