{"title":"Convergence analysis of consensus-based distributed clustering","authors":"P. Forero, A. Cano, G. Giannakis","doi":"10.1109/ICASSP.2010.5495344","DOIUrl":null,"url":null,"abstract":"This paper deals with clustering of spatially distributed data using wireless sensor networks. A distributed low-complexity clustering algorithm is developed that requires one-hop communications among neighboring nodes only, without local data exchanges. The algorithm alternates iterations over the variables of a consensus-based version of the global clustering problem. Using stability theory for time-varying and time-invariant systems, the distributed clustering algorithm is shown to be bounded-input bounded-output stable with an output arbitrarily close to a fixed point of the algorithm. For distributed hard K-means clustering, convergence to a local minimum of the centralized problem is guaranteed. Numerical examples confirm the merits of the algorithm and its stability analysis.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5495344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
This paper deals with clustering of spatially distributed data using wireless sensor networks. A distributed low-complexity clustering algorithm is developed that requires one-hop communications among neighboring nodes only, without local data exchanges. The algorithm alternates iterations over the variables of a consensus-based version of the global clustering problem. Using stability theory for time-varying and time-invariant systems, the distributed clustering algorithm is shown to be bounded-input bounded-output stable with an output arbitrarily close to a fixed point of the algorithm. For distributed hard K-means clustering, convergence to a local minimum of the centralized problem is guaranteed. Numerical examples confirm the merits of the algorithm and its stability analysis.