Convergence analysis of consensus-based distributed clustering

P. Forero, A. Cano, G. Giannakis
{"title":"Convergence analysis of consensus-based distributed clustering","authors":"P. Forero, A. Cano, G. Giannakis","doi":"10.1109/ICASSP.2010.5495344","DOIUrl":null,"url":null,"abstract":"This paper deals with clustering of spatially distributed data using wireless sensor networks. A distributed low-complexity clustering algorithm is developed that requires one-hop communications among neighboring nodes only, without local data exchanges. The algorithm alternates iterations over the variables of a consensus-based version of the global clustering problem. Using stability theory for time-varying and time-invariant systems, the distributed clustering algorithm is shown to be bounded-input bounded-output stable with an output arbitrarily close to a fixed point of the algorithm. For distributed hard K-means clustering, convergence to a local minimum of the centralized problem is guaranteed. Numerical examples confirm the merits of the algorithm and its stability analysis.","PeriodicalId":293333,"journal":{"name":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2010.5495344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper deals with clustering of spatially distributed data using wireless sensor networks. A distributed low-complexity clustering algorithm is developed that requires one-hop communications among neighboring nodes only, without local data exchanges. The algorithm alternates iterations over the variables of a consensus-based version of the global clustering problem. Using stability theory for time-varying and time-invariant systems, the distributed clustering algorithm is shown to be bounded-input bounded-output stable with an output arbitrarily close to a fixed point of the algorithm. For distributed hard K-means clustering, convergence to a local minimum of the centralized problem is guaranteed. Numerical examples confirm the merits of the algorithm and its stability analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于共识的分布式聚类收敛性分析
本文研究了利用无线传感器网络对空间分布数据进行聚类的问题。提出了一种分布式低复杂度聚类算法,该算法只需要相邻节点之间的一跳通信,不需要本地数据交换。该算法在基于共识的全局聚类问题的变量上交替迭代。利用时变系统和定常系统的稳定性理论,证明了分布式聚类算法是有界输入有界输出稳定的,输出任意接近算法的不动点。对于分布式硬k均值聚类,保证了集中问题收敛到局部极小值。数值算例验证了该算法的优点及其稳定性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interactive tone mapping for High Dynamic Range video Search error risk minimization in Viterbi beam search for speech recognition Predicting interruptions in dyadic spoken interactions Simple methods for improving speaker-similarity of HMM-based speech synthesis Model-based dereverberation in the logmelspec domain for robust distant-talking speech recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1